Abstract:
Magnetic keys having a plurality of magnetic plates are disclosed. The location and orientation of the magnetic plates are controlled to generate magnetic fields that are of sufficient strength to be reliably read and sufficient complexity to be difficult to counterfeit. The magnetic keys are located on imaging-device supply items along with non-volatile memory devices containing measurements of the magnetic fields that are digitally signed. These supply items are difficult to counterfeit. Other devices are disclosed.
Abstract:
A method for forming a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example includes filling a first cavity having a tapered surface with a body material. A first layer of a constraining material is provided on top of the first cavity and has a second cavity having a width that is smaller than the first cavity. The second cavity is filled with the body material. Successive layers of the constraining material are provided on top of the first layer of the constraining material. Cavities of the successive layers of the constraining material are selectively filled with at least the body material to form layers of the main body portion of the Z-directed component. The constraining material is dissipated to release the Z-directed component from the constraining material and the Z-directed component is fired.
Abstract:
A method for manufacturing a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example embodiment includes simultaneously extruding a plurality of materials according to the structure of the Z-directed component to form an extruded object and forming the Z-directed component from the extruded object. In one embodiment, the extruded object is divided into individual Z-directed components. In one embodiment, the timing of extrusion between predetermined sections of one of the materials is varied in order to stagger the sections in the extruded object.
Abstract:
A Z-directed capacitor according to one embodiment includes a body having top, bottom and side surfaces, a cross-sectional shape that is insertable into a mounting hole in a printed circuit board, and a plurality of stacked support members. Each support member includes an annular plate mounted on a surface thereof. A first conductive side channel and a second conductive side channel are formed in the side surface and extend along a top-to-bottom dimension of the body. A first set of the annular plates electrically contact the first conductive side channel but not the second conductive side channel and a second set of the annular plates electrically contact the second conductive side channel but not the first conductive side channel. A third conductive side channel is formed in the side surface, extends along the top-to-bottom dimension of the body and is electrically separated from the annular plates.
Abstract:
Described is an invention that adds capacitive sensing ability with a single magnetic field sensor location or distributed within an array of surfaces of the sensor. The capacitive sensing can be achieved by modifying a classic Hall effect sensor or putting separate capacitive sensor plates in close proximity to the hall effect sensor.
Abstract:
A magnetic sensor array device is comprised of an array of magnetic sensors arranged on a common semiconductor substrate to measure the multi-axis magnetic field of an arbitrary sized region at high speed with high spatial resolution and high magnetic resolution. This invention further improves a multi-axis magnetic sensor array device fabricated on a common semiconductor substrate with additional optimizations to provide for variable spatial resolution, variable magnetic resolution, and a novel secret key derivation.
Abstract:
A magnetic sensor array device is comprised of an array of magnetic sensors arranged on a common semiconductor substrate to measure the multi-axis magnetic field of an arbitrary sized region at high speed with high spatial resolution and high magnetic resolution. This invention further improves a multi-axis magnetic sensor array device fabricated on a common semiconductor substrate with additional optimizations to provide for variable spatial resolution, variable magnetic resolution, and a novel secret key derivation.
Abstract:
A method for detecting electrostatic discharge (ESD) events in an imaging device includes scanning a target placed in a scanner to create a scanned image of the target. The scanned image has a plurality of scan lines with each scan line having a number of pixels or samples. For each of the plurality of scan lines, a determination is whether or not the number of pixels or samples of the scan line matches a respective predetermined number of pixels or samples, the predetermined number of pixels or samples being based upon a resolution setting of the scanner. Upon determining that the number of pixels or samples of the scan line does not match the predetermined number of pixels or samples, a count value is incremented. The count value is used as a healthcheck data to indicate at least one ESD event has occurred in the imaging device.
Abstract:
A method for reducing electromagnetic emissions by an image scanner comprises cyclically dithering a frequency of a clock signal of the image scanner by repeated dither cycles, determining a phase of the dither cycle when a scan pass of a page of a document commences; and commencing all subsequent scan passes of the page of the document at a particular phase shift from the determined phase of the dither cycle.
Abstract:
An apparatus for shipping a device containing a circuit, including a bag sized for holding the device; and an antenna connected to the bag, the antenna having a first end for coupling to the circuit of the device when the device is in the bag so as to allow for radio frequency (RF) communication with the device while the device is in the bag. Separation of the device from the bag causes the antenna to be disconnected from the circuit of the device.