Abstract:
A method for manufacturing a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example embodiment includes simultaneously extruding a plurality of materials according to the structure of the Z-directed component to form an extruded object and forming the Z-directed component from the extruded object. In one embodiment, the extruded object is divided into individual Z-directed components. In one embodiment, the timing of extrusion between predetermined sections of one of the materials is varied in order to stagger the sections in the extruded object.
Abstract:
A method for forming a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example includes filling a first cavity having a tapered surface with a body material. A first layer of a constraining material is provided on top of the first cavity and has a second cavity having a width that is smaller than the first cavity. The second cavity is filled with the body material. Successive layers of the constraining material are provided on top of the first layer of the constraining material. Cavities of the successive layers of the constraining material are selectively filled with at least the body material to form layers of the main body portion of the Z-directed component. The constraining material is dissipated to release the Z-directed component from the constraining material and the Z-directed component is fired.
Abstract:
A method for manufacturing a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example embodiment includes simultaneously extruding a plurality of materials according to the structure of the Z-directed component to form an extruded object and forming the Z-directed component from the extruded object. In one embodiment, the extruded object is divided into individual Z-directed components. In one embodiment, the timing of extrusion between predetermined sections of one of the materials is varied in order to stagger the sections in the extruded object.
Abstract:
A method for manufacturing a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example embodiment includes extruding a substrate material according to the shape of the Z-directed component. A conductive material is then selectively applied to the extruded substrate material and the Z-directed component is formed from the extruded substrate material.
Abstract:
A method for forming a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example includes filling a first cavity having a tapered surface with a body material. A first layer of a constraining material is provided on top of the first cavity and has a second cavity having a width that is smaller than the first cavity. The second cavity is filled with the body material. Successive layers of the constraining material are provided on top of the first layer of the constraining material. Cavities of the successive layers of the constraining material are selectively filled with at least the body material to form layers of the main body portion of the Z-directed component. The constraining material is dissipated to release the Z-directed component from the constraining material and the Z-directed component is fired.
Abstract:
A method for manufacturing a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example embodiment includes simultaneously extruding a plurality of materials according to the structure of the Z-directed component to form an extruded object and forming the Z-directed component from the extruded object. In one embodiment, the extruded object is divided into individual Z-directed components. In one embodiment, the timing of extrusion between predetermined sections of one of the materials is varied in order to stagger the sections in the extruded object.