Abstract:
The method and circuit provide an effective implementation to handle the data transferring problem between multiple clock domains. A shift circuit shifts the incoming data stream, which comprises N parallel signals divided into a first group of parallel signals and a second group of parallel signals, to be in accordance with a first sequence of N sampling pulses, and a sampling module sequentially samples each signal in the first group signals and the second group signals with the N sampling pulses in a second sequence and outputs a serial signal.
Abstract:
A method and an apparatus are provided for image stabilization for the output of analog-to-digital converters (ADC) and for phase-locked loops (PLL). The digital coding at the output of ADCs and PLLs is filtered by this method and apparatus to eliminate the noise which has contaminated the coding. The noise sources are noise picked up by the cable, system board noise, ADC power and ground noise paths, and switching noise. The differences of energy level of sequential pixels in the ADC and PLL digital outputs used in image displays are used to decide if correction is required. The method of image noise filtering is compatible with programmable circuitry. This allows the method to be tuned for optimal image stabilization.
Abstract:
In this invention a double data rate (DDR) DRAM is read and written with data coherence. The data is in the form of a data burst either interleaved or sequential and of any length. The data is read from the DDR DRAM depending on whether the starting address is even or odd and taking into consideration CAS latency. Both edges of the clock are used to transfer data in and out of the DDR DRAM. To write data only the starting address of the data burst is used to maintain data coherence. Data coherence is assured by a write followed by a read of the same data to and from the same memory cell.
Abstract:
In this invention a booster circuit is driven with two complimentary boost signals. The two boost signals produce two complimentary boosted signals that are connected to a pump circuit output by means of two pass gate circuits. The transistors in each pass gate are controlled such that one pass gate circuit conducts in a first half of a clock cycle and the second pass gate circuit conducts in a second half of a clock period. Each pass gate is driven such that the full boosted signal is transferred to the output of the pump circuit and is not diminished by a threshold voltage of the pass gate circuit. The efficiency of this design keeps the output capacitor charged to a value close to the average value of boosted signal.
Abstract:
A semiconductor chip set with double-sided off-chip bonding structure in the disclosure comprises at least one first off-chip bonding structure formed above a first surface of the semiconductor chip set, and at least one second off-chip bonding structure formed above a second surface of the semiconductor chip set, wherein the first surface is opposite to the second surface and each of the first off-chip bonding structure and the second off-chip bonding structure is used for connecting to an electrical connecting point external to the semiconductor chip set through bonding wire, through-silicon via (TSV) or micro bump.
Abstract:
An integrated circuit formed on a semiconductor substrate having multiple input/output signal paths such that the semiconductor substrate can be mounted to more than one package type. The integrated circuit formed on the semiconductor substrate has at least three pluralities of input output connector pads. The first plurality of input/output connector pads is placed on the semiconductor substrate and is attached to a first functional circuit of the integrated circuit. The second and third pluralities of input/output connector pads are placed on the semiconductor substrate and are attached to a second functional circuit of the integrated circuit. The third plurality of input/output connector pads is placed in an area separated from the first and second pluralities of input/output connector pads. Each input/output connector pads of the third plurality of input/output connector pads is connected to a corresponding input/output connector pad of the second plurality of input/output connector pads and thus to the second functional circuit. If the semiconductor substrate is mounted in a first package type, the second plurality of input/output connector pads is bonded to pins of the first package type to connect the second functional circuit to the external circuit, and the third plurality of input/output connector pads remain unbonded. If the semiconductor substrate is mounted in a second package type, the third plurality of input/output connector pads is bonded to pins of the second package type to connect the second functional circuit to the external circuit and the second plurality of input/output connector pads remain unbonded.
Abstract:
Circuits and a method are disclosed for a semiconductor memory which decode from a system supplied input address two outputs which are either adjacent or boundary adjacent to each other. The two decoded outputs derived from the input address select then, in one cycle, two locations in a Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM). The circuits producing the two decoded outputs allow for sequential and interleaved mode, for data bursts of various lengths, and for addressing of redundant columns.
Abstract:
A fast CMOS sense amplifier for semiconductor memories is disclosed. The memory sense amplifier configuration is comprised of differential pre-sense amplifier stage and a sense amplifier second stage. The pre-sense amplifier stage is composed of two sections with feedback between the sections which reduces the output swing by means of a clamping action, therefore improving output switching recovery time in response to differential input. The feedback between the sections is provided by cross connecting the sub outputs of each section to the gate of a clamping transistor at each section. The reduced recovery time produces reduced delay at the output which speeds up the operation of the sense amplifier. Additionally, the clamping devices have the effect of reducing the average DC current in the pre-sense amplifier.