摘要:
A method of cleaning an edge of a substrate is provided. The method comprises tensioning a first polishing film in a frame; contacting the first polishing film against an edge of a substrate; conforming the first polishing film to the edge of the substrate, the edge including an outer edge and at least one bevel; and rotating the substrate while the first polishing film remains in contact with the substrate. Numerous other aspects are provided.
摘要:
Apparatus and methods are provided relating to polishing a substrate using a polishing device, such as a polishing tape. The polishing device may be formed to include a base, a resin layer adhering to the base, and a plurality of embossed abrasive particles and/or abrasive beads affixed to the base by the resin layer. The plurality of abrasive particles and/or beads may be embossed in the resin layer. The plurality of abrasive beads may include a plurality of abrasive particles suspended in binder material. The plurality of abrasive particles and/or beads and the resin layer combine to form an abrasive side of the polishing device adapted to contact the substrate. Polishing of the substrate preferably includes polishing an edge of the substrate while the substrate is rotated by a holding device such that no apparatus other than the polishing tape contacts the edge while the substrate is rotating.
摘要:
The present invention relates to an apparatus and a method for polishing a semiconductor substrate with high throughput. One embodiment of the present invention provides an apparatus for electro-chemical mechanical polishing a conductive surface on a substrate. The apparatus comprises a fluid basin having a fluid volume for retaining a polishing solution, a linear polishing station disposed in the fluid basin, wherein the linear polishing station having at least one electrode and a conductive top surface with a linear movement, the conductive top surface is configured to provide an electrical bias to the conductive surface on the substrate, and a carrier head configured to retain the substrate and position the conductive surface of the substrate to be in contact with the conductive top surface of the linear polishing station.
摘要:
Methods of and systems for polishing an edge of a substrate are provided. The invention includes rotating a substrate against a polishing film so as to remove material from the edge of the substrate; and detecting an amount of one of energy and torque exerted in rotating the substrate against the polishing film. The invention may further include determining an amount of material removed from the edge of the substrate based on the detected energy or torque exerted in rotating the substrate against the polishing film; ascertaining a difference between the determined amount of material removed and a preset polish level; and determining an amount of energy or torque to be exerted in rotating the substrate adapted to attain the preset polish level based on the difference between the determined amount of material removed and the preset polish level. Numerous other aspects are provided.
摘要:
Methods are provided for removing conductive materials from a substrate surface. In one aspect, a method includes providing a substrate comprising dielectric feature definitions formed between substrate field regions, a barrier material disposed in the feature definitions and on the substrate field regions, and a conductive material disposed on the barrier material, polishing the substrate to substantially remove a bulk portion of the conductive material with a direct current bias, and polishing the substrate to remove a residual portion of the conductive material with a pulse bias.
摘要:
Methods and apparatus for planarizing a substrate surface are provided. In one aspect, a method is provided for planarizing a substrate surface including polishing a first conductive material to a barrier layer material, depositing a second conductive material on the first conductive material by an electrochemical deposition technique, and polishing the second conductive material and the barrier layer material to a dielectric layer. In another aspect, a processing system is provided for forming a planarized layer on a substrate, the processing system including a computer based controller configured to cause the system to polish a first conductive material to a barrier layer material, deposit a second conductive material on the first conductive material by an electrochemical deposition technique, and polish the second conductive material and the barrier layer material to a dielectric layer.
摘要:
A method is provided for forming thin diffusion barriers in a semiconductor device (10). In one embodiment of the invention, a metal precursor gas is introduced to a surface of a dielectric layer. A predetermined amount of heat is then applied to the metal precursor gas and the dielectric layer. The heat causes the metal precursor gas to react with the dielectric layer, thereby forming a uniform, relatively thin diffusion barrier on the surface of the dielectric layer. In another embodiment of the invention, a metal precursor gas is introduced to a surface of a metal conductor. A predetermined amount of heat can then be applied to the metal precursor gas and the metal conductor, which creates a reaction between the gas and the conductor, and thereby produces a thin diffusion barrier on the surface of the metal conductor.
摘要:
A method is provided for improving the texture of a metal interconnect (32) in a semiconductor device (10). A first layer of titanium (24), a layer of titanium nitride (26), a second layer of titanium (28), and a metal film (30) are sequentially formed over an oxide layer (12). The second titanium layer (28) is preferably out 10-20 nm thick. Because the metal film (30) is formed over the second titanium layer (28), any metal interconnect (32) that is formed as a part of the metal film (30) has a strong (111) crystalline orientation. Furthermore, because the second titanium layer (28) is relatively thin, the metal film (30) and metal interconnect (32) are not completely transformed into a metal compound having a high electrical resistance.
摘要:
A method for measurement of dielectric constant of a thin film is disclosed which is non-destructive and avoids contact with the film and the substrate carrying it. A first characteristic of the substrate is measured using a capacitance measuring device. Then, the thin film is deposited on the substrate. The first characteristic of the substrate is measured a second time after the film has been deposited. Thereafter, the true film thickness is measured. A ratio of the measurements made with the capacitance measuring device is then established with the actual thickness measurement. The dielectric constant can then be derived from a lookup table or graph calibrated for the tools being used for the measurements.
摘要:
Methods of fabricating light emitting diodes using a degas process are described. For example, a method includes providing a partially formed group III-V material layer stack of an LED. Contaminants are removed from the partially formed group III-V material layer stack by a degas process. Formation of the group III-V material layer stack of the LED is then completed.