Abstract:
An enhanced paging mechanism is provided for UEs waking up from a very long paging cycle to improve paging robustness and flexibility. Enhanced paging includes absolute time paging (ATP) and paging with extended wakeup time. For absolute time paging, a UE receives ATP configuration and uses the actual wall time to calculate paging occasion if a condition is satisfied. In one embodiment, the wall time is acquired from at least one of an internal UE clock, a GPS time, information broadcasted from the network, or information from a higher layer signaling. For paging with extended wakeup time, a UE applies a long paging cycle followed by multiple normal paging cycles after waking up from the long paging cycle. In one embodiment, the long paging cycle is infinite and the UE enters normal paging cycle only upon TAU-triggered paging or uplink traffic.
Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast Evolved Packet Service (EPS) bearer in an LTE network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. The multicast MBMS bearer is associated with a Temporary Mobile Group Identifier (TMGI), and wherein the TMGI is associated with the communication group ID. In one embodiment, the access information comprises mapping information between the TMGI and the communication group ID.
Abstract:
Various methods for wireless communication in a device with co-existed/co-located radios are provided. Multiple communication radio transceivers are co-existed/co-located in a user equipment (UE) having in-device coexistence (IDC) capability, which may result in IDC interference. For example, the UE is equipped with both LTE radio and some ISM band applications such as WiFi and Bluetooth modules. In a first method, the network identifies IDC capability by UE identification (e.g., UE ID). In a second method, the UE intentionally performs cell selection or reselection to cells in non-ISM frequency bands. In a third method, the UE signals the existence of ISM band applications via capability negotiation. In a fourth method, the UE signals the activation of ISM band applications by signaling messages (e.g., RRC message or MAC CE). Under the various methods, the UE and its serving eNB can apply FDM or TDM solutions to mitigate the IDC interference.
Abstract:
A method of user equipment (UE) indication of traffic-related information to network is provided. The method comprises a UE determining a traffic indicator and transmitting the traffic indicator to a base station. In one embodiment, the traffic indicator indicates either that default power consumption is preferred or low power consumption is preferred. For example, when the UE is in background traffic or sparse traffic, low power consumption is preferred. In another embodiment, the traffic indicator indicates a time pattern of the traffic history. From the network perspective, upon receiving and evaluating information contained in the traffic indicator, the network triggers a QoS modification procedure by applying one or more QoS modification algorithms.
Abstract:
A method of providing Local IP Access (LIPA) indication is proposed. In one novel aspect, an enhanced cell selection method is proposed using LIPA capability information. Based on LIPA capability related information, a UE is able to prioritize LIPA-capable cells and establish a corresponding packet data network (PDN) connection accordingly. In one embodiment, LIPA information is informed to the UE via Non Access Stratum (NAS) signaling. The UE stores LIPA capability information when receiving a NAS message from a mobility management entity (MME). Later on, when the UE performs cell selection or reselection in idle mode, the UE can use the stored LIPA capability information to prioritize LIPA-capable cells.
Abstract:
Methods for enhanced heterogeneous network mobility are proposed. In a first novel aspect, the cell size of a target cell is considered when determining the TTT value. In one embodiment, pico-specific Time-to-Trigger (TTT) value is configured. When the target cell to be measured is a picocell, pico-specific TTT value is applied. In a second novel aspect, precise mobility state estimation (MSE) is achieved by considering the effect of cell size. In one embodiment, when counting cell changes, a cell change to/from a small cell would be counted to lesser extent than a cell change between large cells. UE uses effective parameters for measurement evaluation, by applying better speed state estimation with speed scaling and by applying parameter differentiation that can be dependent on cell size.
Abstract:
A method for scheduling request triggering based on traffic condition is provided. The method supports detecting a traffic condition, determining a modified scheduling request (SR) trigger based on the traffic condition and transmitting a scheduling request to a base station based on the modified SR trigger. In one embodiment, the modified SR trigger is a data buffer or a data generation rate exceeding a threshold. In one embodiment, the threshold is related to a prioritized Bit Rate (PBR) or a bucket Size Duration (BSD) or both. In another embodiment, the threshold is configured by the base station based on a size of the smallest grant under the traffic condition. In one embodiment, the threshold is updated when DRX state changes. In another embodiment, during DRX sleep state, the SR period is longer or SR is stopped.
Abstract:
An enhanced access control method is proposed for machine-type communications (MTC) in a 3GPP LTE-Advanced network. An MTC device is configured for enhanced access barring (EAB). When the MTC device attempts access to the network, the NAS layer checks whether EAB is applicable for the MTC device. If yes, then the NAS layer forwards EAB configuration to the AS layer for further EAB control. Based on the EAB configuration, a base station broadcasts EAB information to UEs via system information block. The EAB information indicates whether barring is applied to a number of EAB categories and a number of access classes. Based on the EAB information, the MTC devices performs EAB for access attempt to RRC. If access is not barred under EAB, then the MTC device further performs ACB for access attempt to RRC.
Abstract:
A method for adaptive multi-window technology includes detecting a multi-window scenario corresponding to a plurality of windows on an electronic device, determining priorities of the plurality of windows, monitoring a plurality of performance indexes of the electronic device, checking whether resource re-allocation is needed according to the performance indexes, determining targets of the plurality of windows if resource re-allocation is needed, and changing profiles of the targets according to a resource re-allocation algorithm.
Abstract:
A method of enhanced discontinuous reception (DRX) operation for additional power saving is proposed. A UE is allowed to not restart the DRX inactivity timer if there is no uplink data available to transmit, even when the UE receives a dynamic uplink grant. The UE thus can terminate the DRX active time and go to sleep earlier when the inactivity timer expires. The UE can send a sync message to inform the gNB of “not restarting the inactivity timer”, or the UE can send information for the gNB to know when the DRX active time will be terminated. Furthermore, the UE is allowed to request for dynamic DRX active time termination, e.g., to dynamically request for terminating the DRX active time earlier by sending a request or a notification to the network.