摘要:
An optical element is moved in six-degrees-of-freedom. Three first displacement sensors are disposed on a base plate and measure respective displacement amounts of three mutually different points on the optical element in a first direction. A second displacement sensor measures a displacement amount of one point on the optical element in a second direction. Two third displacement sensors measure respective displacement amounts of two mutually different points on the optical element in a third direction. A transformation processor transforms the six measured displacement amounts. A calibration processor calibrates the transformed displacement amounts with a calibration matrix of which coefficients are previously obtained to calibrate the displacement amounts in the six-degrees-of-freedom, which have errors due to measurement errors of the displacement sensors. A controller outputs command values based on differences between the calibrated displacement amounts and target displacement amounts.
摘要:
An exposure apparatus includes a projection optical system for projecting a pattern of a reticle onto a substrate to be exposed, via a liquid that is filled in a space between the substrate and a final lens that is closest to the substrate, a movement restricting part for restricting a movement of the liquid by forming a interval between the movement restricting part and the substrate, the interval is smaller than a interval of the space, and a moving part for moving the movement restricting part so that the interval between the movement restricting part and the substrate increases.
摘要:
A driving apparatus comprising an optical element, a supporting block for supporting said optical element by contacting said optical element onto three supporting contact areas, a driving mechanism for practically connecting said supporting block to three driving contact areas and for moving said supporting block via the driving contact area, wherein a difference between an angle of each of the three supporting contact areas in a rotational direction around a rotation axis and an angle of each of the three driving contact areas corresponding with the three supporting contact areas is 10° or smaller, where the three supporting areas are substantially located on a first plane, and the rotational axis which is perpendicular to the first plane and passes through a barycenter of the three supporting contact areas.
摘要:
Vertical MISFETs are formed over drive MISFETs and transfer MISFETs. The vertical MISFETs comprise rectangular pillar laminated bodies each formed by laminating a lower semiconductor layer (drain), an intermediate semiconductor layer, and an upper semiconductor layer (source), and gate electrodes formed on corresponding side walls of the laminated bodies with gate insulating films interposed therebetween. In each vertical MISFET, the lower semiconductor layer constitutes a drain, the intermediate semiconductor layer constitutes a substrate (channel region), and the upper semiconductor layer constitutes a source. The lower semiconductor layer, the intermediate semiconductor layer and the upper semiconductor layer are each comprised of a silicon film. The lower semiconductor layer and the upper semiconductor layer are doped with a p type and constituted of a p type silicon film.
摘要:
The degree of integration and the number of rewriting of a semiconductor device having a nonvolatile memory element are improved. A first MONOS nonvolatile-memory-element and a second MONOS nonvolatile-memory-element having a large gate width compared with the first MONOS nonvolatile-memory-element are mounted together on the same substrate, and the first MONOS nonvolatile-memory-element is used for storing program data which is scarcely rewritten, and the second MONOS nonvolatile-memory-element is used for storing processed data which is frequently rewritten.
摘要:
The present invention provides a positioning apparatus capable of performing six-axis micro adjustment of an optical element in an exposure apparatus with high accuracy, and the exposure apparatus. The positioning apparatus of the present invention includes a first measurement unit for measuring a position/inclination of a moving part having an optical element while being kept from contact with the moving part, and a driving unit capable of driving the moving part in directions of six axes with respect to a fixed part while being kept from contact with the moving part, based on the result of measurement by the first measurement unit.
摘要:
The present invention provides a positioning mechanism and an exposure apparatus that can be used in a vacuum ambience and has a damping function with small degassing and small dust creation. A positioning mechanism according to the present invention, when used with first and second members, serve to position the second member with respect to the first member, wherein the positioning mechanism include a positioning portion capable of relatively positioning the second member relative to the first member, and an attenuating material provided at least at a portion of a periphery of the positioning portion.
摘要:
The present invention provides a positioning mechanism and an exposure apparatus that can be used in a vacuum ambience and has a damping function with small degassing and small dust creation. A positioning mechanism according to the present invention, when used with first and second members, serve to position the second member with respect to the first member, wherein the positioning mechanism include a positioning portion capable of relatively positioning the second member relative to the first member, and an attenuating material provided at least at a portion of a periphery of the positioning portion.
摘要:
An optical component moving device having a driving portion and guiding portion, for moving an optical component, wherein the driving portion includes fluid enclosure system being expandable and contractible and the guiding portion includes a leaf spring.
摘要:
A method of performing an imprint process on each of a plurality of shot regions of a substrate, wherein each shot region includes at least one of at least one valid chip area and at least one invalid chip area, the invalid chip area including an inhibited area in which resin coating is inhibited, the imprint process for a shot region including both the invalid chip area and the valid chip area includes coating the valid chip area of the shot region with the resin, bringing a pattern surface of a mold into contact with the resin, and curing the resin, and in the step of coating, at least the inhibited area of the invalid chip area is not coated with the resin.