Abstract:
A method for imaging of an anatomical structure includes acquiring a plurality of ultrasonic images of the anatomical structure. At least one of the images includes Doppler information. One or more contours of the anatomical structure are generated from the Doppler information. A three-dimensional image of the anatomical structure is reconstructed from the plurality of ultrasonic images, using the one or more contours.
Abstract:
A position sensing system includes a probe adapted to be introduced into a body cavity of a subject. The probe includes a magnetic field transducer and at least one probe electrodes. A control unit is configured to measure position coordinates of the probe using the magnetic field transducer. The control unit also measures an impedance between the at least one probe electrodes and one or more points on a body surface of the subject. Using the measured position coordinates, the control unit calibrates the measured impedance.
Abstract:
A resonant circuit is incorporated in a stent, which implantable in a pulmonary vein using known cardiac catheterization techniques. When an external RF field is generated at the resonant frequency of the stent, RF energy is re-radiated by the stent toward electroconductive tissue in the wall of the pulmonary vein, and produces a circumferential conduction block. The stent can be made of biodegradable materials, so that it eventually is resorbed. Following an ablation procedure, the stent may be left in situ. Repeated ablation can be performed using the inserted stent until it has been determined that the desired lesions have been formed. Furthermore, the same stent can potentially be used even years after being inserted should the treated arrhythmia reoccur or a new arrhythmia develop, thereby possibly obviating the need for an invasive procedure at that future time.
Abstract:
A method for treating atrial fibrillation in a heart of a patient includes placing an ultrasonic catheter in a first chamber of the heart; acquiring two-dimensional ultrasonic images of a second chamber of the heart and at least a portion of surrounding structures of the second chamber using the ultrasonic catheter placed in the first chamber; reconstructing a three-dimensional ultrasonic image based on the two-dimensional ultrasonic images; displaying the reconstructed three-dimensional ultrasonic image; identifying at least one key landmark on the reconstructed three-dimensional ultrasonic image; marking the least one key landmark on the reconstructed three-dimensional ultrasonic image; penetrating the septum for accessing the second chamber of the heart while using the marked at least one key landmark for guidance; positioning a sheath through the penetrated septum and within the second chamber of the heart; inserting an ablation catheter through the sheath and into the second chamber of the heart; and ablating a portion of the second chamber of the heart using the ablation catheter while under observation with the ultrasound catheter located in the first chamber of the heart.
Abstract:
A catheter introduction apparatus provides an optical assembly for emission of laser light energy. In one application, the catheter and the optical assembly are introduced percutaneously, and transseptally advanced to the ostium of a pulmonary vein. An anchoring balloon is expanded to position a mirror near the ostium of the pulmonary vein, such that light energy is reflected and directed circumferentially around the ostium of the pulmonary vein when a laser light source is energized. A circumferential ablation lesion is thereby produced, which effectively blocks electrical propagation between the pulmonary vein and the left atrium.
Abstract:
A method for telemetrically measuring a parameter in a patient's heart comprises the steps of imaging the heart and identifying an implantation site in the heart. An opening is created in the tissue at the implantation site. A sensor comprising a housing, a membrane at one end of the housing wherein the membrane is deformable in response to the parameter, and a microchip positioned within the housing and operatively communicating with the membrane for transmitting a signal indicative of the parameter is provided. The sensor is placed in the opening and the parameter is telemetrically measured from outside of the patient's body based on the transmitted signal by the sensor. The sensor is also telemetrically powered from outside of the patient's body. A signal charging and reading device is placed outside of the patient's body for telemetric powering and signal reading with respect to the sensor. In an alternative embodiment, the sensor has a tapered distal end and a tissue piercing tip for direct implantation into tissue. Alternative embodiments of this sensor include helical threads on the tapered distal end for threading the sensor into tissue and a plurality of tissue barbs for direct and firm anchoring of the sensor in tissue.
Abstract:
A reliable endocardial map is obtained by constructing a matrix relationship between a small number of endocardial points and a large number of external receiving points using a multi-electrode chest panel. Inversion of the matrix yields information allowing the endocardial map to be constructed. Subsequent maps are obtained noninvasively using the multi-electrode chest panel, applying new electrical signals to the matrix relationship, and again inverting the matrix to generate new endocardial electrical maps.
Abstract:
Cardiac tissue ablation is carried out by defining first regions containing first locations including ganglionated plexi in a heart of a living subject, and inserting a probe into the heart. The method is further carried out by detecting electrical activity in the heart via electrodes on the distal portion of the probe, defining second regions having second locations, wherein the electrical activity exhibits a dominant frequency that is higher than a predefined threshold, defining third regions having third locations, wherein the electrical activity exhibits complex fractionated atrial electrograms, constructing an electroanatomical map of the heart that defines intersections of the first regions and at least one of the second regions and the third regions, selecting ablation sites within the intersections, and ablating cardiac tissue at the ablation sites.
Abstract:
A device for enhancing visualization of an esophagus when imaged by a visualization system includes a structure including material that is clearly visible when imaged by the visualization system. The structure is arranged, when inserted into the esophagus, to expand so as to conform to an inner surface of the esophagus in order to enhance a visualization quality of the surface when imaged by the visualization system. A cord attached to the structure is arranged to extend out of the esophagus so as to assist a removal of the device from the esophagus.
Abstract:
Pressure-sensing apparatus includes a sensor die, which is configured for percutaneous insertion through a wall of a blood vessel of a patient so as to generate an electrical signal that is responsive to a pressure in the blood vessel. A wire has a first end connected to the sensor die and a second end connected to an electronics package, which is configured for subcutaneous implantation and is connected via the wire to receive and process the electrical signal that is generated by the sensor die in order to provide an output that is indicative of the pressure.