摘要:
An anti-fuse structure that included a buried electrically conductive, e.g., metallic layer as an anti-fuse material as well as a method of forming such an anti-fuse structure are provided. According to the present invention, the inventive anti-fuse structure comprises regions of leaky dielectric between interconnects. The resistance between these original interconnects starts decreasing when two adjacent interconnects are biased and causes a time-dependent dielectric breakdown, TDDB, phenomenon to occur. Decreasing of the resistance between adjacent interconnects can also be expedited via increasing the local temperature.
摘要:
A trilayer resist (TLR) patterning scheme is provided to enable gate conductors, particularly polySi gate conductors, with critical dimensions (CDs) of less than 40 nm and minimal LER and LWR. In accordance with the present invention, the inventive patterning scheme utilizes an organic/inorganic/organic multilayer stack instead of an organic layer used in the prior art. The top organic layer of the inventive TLR is a photoresist material such as a 193 nm photoresist that is located atop an antireflective coating (ARC), which is also comprised of an organic material. The middle inorganic layer of the TLR comprises any oxide layer such as, for example, a low temperature (less than or equal to 250° C.) chemical vapor deposited (CVD) oxide, an oxide derived from TEOS (tetraethylorthosilicate), silicon oxide, a silane oxide, or a Si-containing ARC material. The bottom organic layer of the TLR comprises any organic layer such as, for example, a Near Frictionless Carbon (NFC), a diamond-like carbon, a thermosetting polyarylene ether.
摘要:
A method for fabricating a transistor having self-aligned borderless electrical contacts is disclosed. A gate stack is formed on a silicon region. An off-set spacer is formed surrounding the gate stack. A sacrificial layer that includes a carbon-based film is deposited overlying the silicon region, the gate stack, and the off-set spacer. A pattern is defined in the sacrificial layer to define a contact area for the electrical contact. The pattern exposes at least a portion of the gate stack and source/drain. A dielectric layer is deposited overlying the sacrificial layer that has been patterned and the portion of the gate stack that has been exposed. The sacrificial layer that has been patterned is selectively removed to define the contact area at the height that has been defined. The contact area for the height that has been defined is metalized to form the electrical contact.
摘要:
A trilayer resist (TLR) patterning scheme is provided to enable gate conductors, particularly polySi gate conductors, with critical dimensions (CDs) of less than 40 nm and minimal LER and LWR. In accordance with the present invention, the inventive patterning scheme utilizes an organic/inorganic/organic multilayer stack instead of an organic layer used in the prior art. The top organic layer of the inventive TLR is a photoresist material such as a 193 nm photoresist that is located atop an antireflective coating (ARC), which is also comprised of an organic material. The middle inorganic layer of the TLR comprises any oxide layer such as, for example, a low temperature (less than or equal to 250° C.) chemical vapor deposited (CVD) oxide, an oxide derived from TEOS (tetraethylorthosilicate), silicon oxide, a silane oxide, or a Si-containing ARC material. The bottom organic layer of the TLR comprises any organic layer such as, for example, a Near Frictionless Carbon (NFC), a diamond-like carbon, a thermosetting polyarylene ether.
摘要:
Novel interconnect structures possessing a OSG or polymeric-based (90 nm and beyond BEOL technologies) in which advanced plasma processing is utilized to reduce post lithographic CD non-uniformity (“line edge roughness”) in semiconductor devices. The novel interconnect structure has enhanced liner and seed conformality and is therefore capable of delivering improved device performance, functionality and reliability.
摘要:
An anti-fuse structure that included a buried electrically conductive, e.g., metallic layer as an anti-fuse material as well as a method of forming such an anti-fuse structure are provided. According to the present invention, the inventive anti-fuse structure comprises regions of leaky dielectric between interconnects. The resistance between these original interconnects starts decreasing when two adjacent interconnects are biased and causes a time-dependent dielectric breakdown, TDDB, phenomenon to occur. Decreasing of the resistance between adjacent interconnects can also be expedited via increasing the local temperature.
摘要:
A method for fabricating a transistor having self-aligned borderless electrical contacts is disclosed. A gate stack is formed on a silicon region. An off-set spacer is formed surrounding the gate stack. A sacrificial layer that includes a carbon-based film is deposited overlying the silicon region, the gate stack, and the off-set spacer. A pattern is defined in the sacrificial layer to define a contact area for the electrical contact. The pattern exposes at least a portion of the gate stack and source/drain. A dielectric layer is deposited overlying the sacrificial layer that has been patterned and the portion of the gate stack that has been exposed. The sacrificial layer that has been patterned is selectively removed to define the contact area at the height that has been defined. The contact area for the height that has been defined is metalized to form the electrical contact.
摘要:
A method for fabricating recessed source and recessed drain regions of aggressively scaled CMOS devices. In this method a processing sequence of plasma etch, deposition, followed by plasma etch is used to controllably form recessed regions of the source and the drain in the channel of a thin body, much less than 40 nm, device to enable subsequent epitaxial growth of SiGe, SiC, or other materials, and a consequent increase in the device and ring oscillator performance. A Field Effect Transistor device is also provided, which includes: a buried oxide layer; a silicon layer above the buried oxide layer; an isotropically recessed source region; an isotropically recessed drain region; and a gate stack which includes a gate dielectric, a conductive material, and a spacer.
摘要:
An inorganic electron beam sensitive oxide layer is formed on a carbon based material layer or an underlying layer. The inorganic electron beam sensitive oxide layer is exposed with an electron beam and developed to form patterned oxide regions. An ultraviolet sensitive photoresist layer is applied over the patterned oxide regions and exposed surfaces of the carbon based material layer, and subsequently exposed with an ultraviolet radiation and developed. The combined pattern of the patterned ultraviolet sensitive photoresist and the patterned oxide regions is transferred into the carbon based material layer, and subsequently into the underlying layer to form trenches. The carbon based material layer serves as a robust mask for performing additional pattern transfer into the underlying layer, and may be easily stripped afterwards. The patterned ultraviolet sensitive photoresist, the patterned oxide regions, and the patterned carbon based material layer are subsequently removed.
摘要:
A method for fabricating recessed drain regions of aggressively scaled CMOS devices. In this method a processing sequence of plasma etch, deposition, followed by plasma etch is used to controllably form recessed regions of the drain in the channel of a thin body, much less than 40 nm, device to enable subsequent epitaxial growth of SiGe, SiC, or other materials, and a consequent increase in the device and ring oscillator performance. A Field Effect Transistor device is also provided, which includes: a buried oxide layer; a silicon layer above the buried oxide layer; an isotropically recessed drain region; and a gate stack which includes a gate dielectric, a conductive material, and a spacer.