Abstract:
A vibrator is provided that includes a substrate having a major surface defined in width and length directions and one or more electrodes formed at least in a substantial entire region of the major surface of the substrate in the length direction, and that performs, as main vibration, expansion-contraction vibration along the width direction in accordance with a voltage applied to the electrodes. Moreover, a holder surrounds at least a portion of the vibrator; and a holding arm connects the vibrator to the holder. Moreover, the vibrator has a width Wo in the width direction positioned at an end in the length direction and includes, to have a width Wm differing from the width Wo and positioned between a pair of ends opposing in the length direction, a variant portion at least one or more locations that is in a shape recessed or projecting in the width direction.
Abstract:
A resonator that includes a piezoelectric vibrator, a frame, and a first node generator between the piezoelectric vibrator and the frame. Moreover, a first connecting arm connects the first node generator to the piezoelectric vibrator that opposes the first, and a first holding arm connects the first node generator to a part of the frame that opposes the first node generator. The first node generator includes a width extending in a second direction, which is orthogonal to a first direction of the first connecting arm, that is a maximum width where the first node generator is closer to the first connecting arm than a center of the first node generator relative to the first direction. Moreover, the width of the first node generator gradually decreases from the maximum width as the first node generator extends towards the first holding arm.
Abstract:
A resonator is provided that suppresses frequency variations with etching without decreasing the strength of vibration arms. The resonator includes a base portion, a first vibration portion extending from the base portion in a first direction and having a first width, and a second vibration portion extending from the base portion in the first direction with a first gap between the first and second vibration portions and having the first width. The first and second vibration portions perform out-of-plane bending vibration with opposite phases at a predetermined frequency. The predetermined frequency varies in accordance with the first width and the first gap. The ratio of the first gap to the first width is within a range that causes an absolute value of rates of variations in the predetermined frequency with respect to variations in the first width and in the first gap to be not more than about 100 ppm.
Abstract:
A resonator is provided having a first electrode and a second electrode; and a piezoelectric film that is disposed between the first and second electrodes, has an upper surface opposing the first electrode, and that vibrates in a predetermined vibration mode when a voltage is applied between the first and second electrodes. Moreover, the resonator includes a protective film made of an insulator and disposed opposing the upper surface of the piezoelectric film with the first electrode interposed therebetween. Furthermore, a conductive film made of a conductor is provided that is disposed opposing the upper surface of the piezoelectric film with the protective film interposed therebetween, where the conductive film is electrically connected to any one of the first and second electrodes.
Abstract:
A resonator that includes a rectangular vibrating portion having first and second pairs of sides that provides contour vibration. A frame surrounds a periphery of the vibrating portion and a first holding unit between the frame and one of the first sides and includes a first arm substantially in parallel to the vibrating portion, multiple second arms connecting the first arm with the vibrating portion, and a third arm connecting the first arm with the frame. A first connection line is on the first arm; a first terminal is on the frame; three or more electrodes are on the vibrating portion; and multiple first extended lines are on the second arms and connect first and second electrodes with the first connection line. The first extended lines are connected to the first connection line, which is electrically connected to the first terminal.
Abstract:
A tuning-fork type quartz vibrator is disclosed that includes excitation electrodes and a tuning-fork type vibrating reed that is made of quartz and in which first and second vibrating arm sections are integrally joined to a base section. In each of the first and second vibrating sections, a plurality of through-holes and two or more crosspieces are provided. Further, an effective excitation electrode ratio is no more than 0.97, the effective excitation electrode ratio being expressed by (a total area of the excitation electrodes in a cross-section orthogonal to a second direction as a width direction of each of the first and second vibrating arm sections)/(an area of a region where the plurality of through-holes are provided in the cross-section orthogonal to the second direction as the width direction of each of the first and second vibrating arm sections).
Abstract:
A resonator is provided that suppresses frequency variations with etching without decreasing the strength of vibration arms. The resonator includes a base portion, a first vibration portion extending from the base portion in a first direction and having a first width, and a second vibration portion extending from the base portion in the first direction with a first gap between the first and second vibration portions and having the first width. The first and second vibration portions perform out-of-plane bending vibration with opposite phases at a predetermined frequency. The predetermined frequency varies in accordance with the first width and the first gap. The ratio of the first gap to the first width is within a range that causes an absolute value of rates of variations in the predetermined frequency with respect to variations in the first width and in the first gap to be not more than about 100 ppm.
Abstract:
A vibrating device having a number 2N (N is an integer equal to 2 or larger) of tuning fork arms extending in a first direction are arranged side by side in a second direction. Phases of flexural vibrations of the number N of tuning fork arms positioned at a first side of an imaginary line A, which passes a center of a region in the second direction where the number 2N of tuning fork arms are disposed and which extends in the first direction, are symmetric to phases of flexural vibrations of the number N of tuning fork arms positioned at a second side of the imaginary line opposite the first side.
Abstract:
A method of manufacturing a piezoelectric element, which includes a first electrode adjacent a first main surface of a mother piezoelectric substrate and a second electrode adjacent a second main surface. During formation of the first electrode and the second electrode, cutouts are provided in the first electrode and the second electrode so that the shapes of the first electrode and the second electrode are different from each other when the mother piezoelectric substrate is inverted.
Abstract:
A resonator that includes a substrate, an insulating film that is formed on the substrate, and vibration regions each of which is formed on the insulating film and includes lower electrodes that are formed on the insulating film, a piezoelectric film that is formed on the lower electrodes, and an upper electrode that is formed on the piezoelectric film. At least one lower electrode of the lower electrodes that are formed on the insulating film has an electric potential that differs from an electric potential of another lower electrode such that at least one vibration region vibrates in antiphase with another vibration region. Moreover, a package seals a resonator and includes the substrate, the insulating film, and the vibration regions and includes a ground terminal for grounding the substrate.