Abstract:
A method implemented in a mobile communications network supporting coordinated multiple point transmission and reception (CoMP) is disclosed. The method includes transmitting, to a user equipment (UE), data in a physical downlink shared channel (PDSCH), and transmitting a reference signal to the UE, wherein a union of resource elements (REs) allocated for reference signals transmitted from a subset of a plurality of transmission points (TPs) in a CoMP set are excluded from resource mapping for transmitting the data to the UE. Other methods, systems, and apparatuses also are disclosed.
Abstract:
A method implemented in a user equipment used in a multi-user multiple input multiple output (MU-MIMO) wireless communications system is disclosed. The method includes receiving from a base station an indication of a first modulation type for the user equipment, receiving a first data signal for the user equipment, receiving a second data signal for a co-scheduled user equipment, where a second modulation type for the co-scheduled user equipment is unknown to the user equipment, and deciding the second modulation type. Other methods, systems, and apparatuses also are disclosed.
Abstract:
A communications method implemented in a transmission point (TP) used in a coordinated multipoint transmission and reception (CoMP) system is disclosed. The communications method comprises transmitting, to a user equipment (UE), attributers for up to four indicators indicating at least physical downlink shared channel (PDSCH) resource element (RE) mapping, and transmitting, to the UE, one of the four indicators, each of which is conveyed in 2 bits, wherein the four indicators comprises ‘00’, ‘01’, ‘10’, and ‘11’ corresponding to a first set, a second set, a third set, and a fourth set of parameters, respectively. Other methods, apparatuses, and systems are also disclosed.
Abstract:
A wireless communications system is disclosed. The system comprises a baseband processing unit (BBU) pool including one or more baseband processing units (BBUs), and a plurality of remote radio heads (RRHs) connected to the BBU pool through a front-haul network, wherein the wireless communications system has a plurality of sectors, each of which includes one or more small cells, each of which is deployed by one of the plurality of RRHs, wherein a BBUs is mapped to two or more RRHs in a sector in a one-to-many configuration, and a BBU is mapped to a single RRH in a sector in a one-to-one configuration, and wherein a combination of the one-to-one configuration and the one-to-many configuration is applied to each sector. Other systems, apparatuses, and methods also are disclosed.
Abstract:
DFT-based channel estimation methods and systems are disclosed. One system includes an inverse discrete Fourier transform module, a noise power estimator, a noise filter and a discrete Fourier transform module. The inverse discrete Fourier transform module is configured to determine time domain estimates by applying an inverse discrete Fourier transform to initial channel estimates computed from pilot signals. Additionally, the noise power estimator is configured to estimate noise power by determining and utilizing time domain samples that are within a vicinity of sinc nulls of the time domain estimates. The noise filter is configured to filter noise from the time domain estimates based on the estimated noise power to obtain noise filtered time domain estimates. Further, the discrete Fourier transform module is configured to perform a discrete Fourier transform on the noise filtered time domain estimates to obtain frequency domain channel estimates for channels on which pilot signals are transmitted.
Abstract:
A wireless communications method implemented in a network system that supports coordinated multipoint transmission and reception (CoMP) is disclosed. The wireless communications method includes informing a user equipment (UE) semi-statically of a codebook subset for each channel state information (CSI) process, wherein the UE is restricted to report an indication of a precoding matrix within the codebook subset. Other methods, apparatuses, and systems are also disclosed.
Abstract:
A communications method implemented in a transmission point (TP) used in a coordinated multipoint transmission and reception (CoMP) system is disclosed. The communications method comprises transmitting, to a user equipment (UE), attributers for up to four indicators indicating at least physical downlink shared channel (PDSCH) resource element (RE) mapping, and transmitting, to the UE, one of the four indicators, each of which is conveyed in 2 bits, wherein the four indicators comprises ‘00’, ‘01’, ‘10’, and ‘11’ corresponding to a first set, a second set, a third set, and a fourth set of parameters, respectively. Other methods, apparatuses, and systems are also disclosed.
Abstract:
A method implemented in a user equipment (UE) used in an orthogonal frequency division multiple access (OFDMA) wireless communications system supporting coordinated multi-point (CoMP) joint transmission (JT) is disclosed. The method includes measuring reference signal received power (RSRP), transmitting, to a network, first feedback on the RSRP, receiving, from the network, a CoMP measurement set, conducting pre-scheduling CoMP UE fallback according to the CoMP measurement set, computing channel quality and direction information according to a UE category, and transmitting, to the network, second feedback on the channel quality and direction information. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A communications method implemented in a transmission point (TP) used in a coordinated multipoint transmission and reception (CoMP) system is disclosed. The communications method includes transmitting, to a user equipment (UE), an indication of a channel state information (CSI) process in a CSI pattern comprising a set of CSI processes, wherein the UE is configured with the CSI process for at least one of the other CSI processes in the CSI pattern, and wherein a reported rank indication (RI) for the CSI process is the same as an RI for said at least one of the other CSI processes. Other methods, apparatuses, and systems are also disclosed.
Abstract:
A method implemented in a base station for conveying scheduling information in an orthogonal frequency division multiple access (OFDMA) multi-user (MU)-multiple input multiple output (MIMO) system is disclosed. The method includes transmitting to a first user equipment (UE) the scheduling information including first scheduling information of the first UE and at least a portion of second scheduling information of at least one second UE, wherein the scheduling information includes a resource block (RB) assigned to the first UE, the number of streams, and an indication of one or more dedicated reference symbol (RS) layers assigned to the first UE. Other methods, systems, and apparatuses also are disclosed.