摘要:
To control information obtained from inside of a living body with higher precision as compared to that in the conventional technology by controlling a ratio of intensities of light, directed to a trial body, in a plurality of wavelength ranges different in peak wavelength from each other, a measurement error included in information obtained from the living body can be controlled by changing a ratio of intensity of the light in the first wavelength range against that of the light in the second wavelength range. When intensity of irradiated light is limited from the viewpoint of safety to the trial subject, keeping a ratio of the light irradiated to the trial body in the first wavelength range against that of the light in the second wavelength range under a prespecified value and also changing the ratio of irradiated light intensities under the prespecified value.
摘要:
The efficiency of separating normal control subjects from non-normal control subjects and separating disorders from one another is improved. Plural classification models having a stratified structure are used, and areas from which measurement data used in the plural classification models are acquired differ among the classification models.
摘要:
The present invention is capable of separating/removing the influence of skin blood flow contained in near infrared spectroscopy (NIRS) signals and extracting a brain- or brain cortex-origin signal. Moreover, the present invention enables versatile separation of brain-origin and skin-origin signals in view of differences among individuals. A biological photometric device, wherein light transmitters and light receivers are located in such a manner that measurement can be conducted at a plurality of source-detector (SD) distances and light received by the individual light-receivers can pass through the gray matter to thereby separate a brain-origin signal and a skin-origin signal. Individual component analysis (ICA) is conducted on data obtained at the individual measurement points. Then, it is determined whether each individual component originates in the brain or in the skin with the use of the SD distance-dependency of the weighted value of each of the separated components.
摘要:
There is provided an optical bioinstrumentation device, with which measurement data reflect more correctly the information inside the living body with less noise even the subject moves when the information inside the living body is measured by using the light.In the present invention, the means for fixing the part other than the tips of the optical fibers for irradiation and detection on the fixing member which is to fix the tips of the optical fiber for irradiation and detection on the subject, or, the means for fixing the optical fiber is fixed on the fixing member which is to fix the end of the optical fiber on the subject, or the means for fixing the optical fiber at two or more positions on the subject.
摘要:
In a probe positioning technology, an optical bioinstrumentation includes a region selecting unit that is used to delineate a region of interest in an anatomical image of a subject, a computing unit that determines a recommended probe position according to the region of interest, a probe position sensor that detects a current probe position, a computing unit that calculates the distance between the recommended probe position and the current probe position, and an alarm device that generates an alarm sound or the like when the distance falls within a predetermined range. Moreover, the optical bioinstrumentation for living body further includes a memory unit in which the probe position is saved together with measurement data.
摘要:
There is provided an optical bioinstrumentation device, with which measurement data reflect more correctly the information inside the living body with less noise even the subject moves when the information inside the living body is measured by using the light.In the present invention, the means for fixing the part other than the tips of the optical fibers for irradiation and detection on the fixing member which is to fix the tips of the optical fiber for irradiation and detection on the subject, or, the means for fixing the optical fiber is fixed on the fixing member which is to fix the end of the optical fiber on the subject, or the means for fixing the optical fiber at two or more positions on the subject.
摘要:
In a probe positioning technology, an optical bioinstrumentation includes a region selecting unit that is used to delineate a region of interest in an anatomical image of a subject, a computing unit that determines a recommended probe position according to the region of interest, a probe position sensor that detects a current probe position, a computing unit that calculates the distance between the recommended probe position and the current probe position, and an alarm device that generates an alarm sound or the like when the distance falls within a predetermined range. Moreover, the optical bioinstrumentation for living body further includes a memory unit in which the probe position is saved together with measurement data.
摘要:
In order to provide a compact device easy to handle and adjust for use in bloodless measurement of the glucose concentration, in which the angle of polarization varies in synchronism with the magnetic field modulation, the direction of applying the magnetic field is so arranged as to cross the optical axis.
摘要:
Disclosed is a device using a biological optical measurement technology to evaluate mood states in daily life of an examinee by presenting a first task once or a plurality of times and then presents a second task a plurality of times, calculating a hemoglobin signal of a predetermined measurement point for the first task and a hemoglobin signal of a predetermined measurement point for the second task, and calculating quantitative values using the obtained hemoglobin signals.
摘要:
The mental state, such as mood or emotion, of an individual can be apprehended by a method using non-invasive biological light measurement technology. A biological light measurement device, which has an irradiation section, presents different tasks (at least a first task and a second task) to a subject, hemoglobin signals based on changes in the concentration of oxygenated hemoglobin and deoxygenated hemoglobin in the subject are calculated from the strength of light detected by a detection section, and a relative value using the hemoglobin signal at a predetermined measurement channel with respect to the first task, and the hemoglobin signal at a different predetermined measurement channel with respect to the second task is calculated.