Abstract:
An EEPROM is organized in matrix form in word lines and bit lines. Storage cells are placed at the intersections of these lines. The cells include floating gate storage transistors. Groups of cells having separate bit lines but sharing a word line are created. Each group is connected to a group selection transistor. The group selection transistor selectively connects the control gates of the storage transistors to control lines, which provide potentials for enabling programming, erasure or reading of the storage transistors.
Abstract:
A selector switch circuit comprises an input terminal to receive a positive voltage, an input terminal to receive a negative voltage, a command input terminal to receive a first command logic signal and an output terminal to provide an output voltage. The output is connected selectively to one of the input terminals, the first and second input terminals being connected to the output terminal by means of a first transistor and a second transistor and the circuit comprising control means for the production, as a function of the command signal, of the control voltages applied to the control gates of the transistors for the selective connection of the output terminal to one of the input terminals.
Abstract:
A phase generator circuit cyclically produces a first pair of phase signals and a second pair of phase signals, comprising a first circuit to produce a first phase of each pair of phase signals, these first phase signals being non-overlapping and switching over between a voltage 0 and a voltage VCC, and second and third circuits for the production, from the first phase signals, respectively of the second phase of the first pair and the second phase of the second pair of phase signals, these second phase signals being non-overlapping with the first phase signals and switching over between a negative voltage -V and a voltage VCC. The disclosure finds application in the piloting of charge pump type of negative voltage generator circuit.
Abstract:
A biasing structure for a memory cell storage element, for setting an operating voltage at an accession electrode of the memory cell storage element. The biasing structure includes a biasing transistor coupled to the accession electrode and adapted to set the operating voltage based on a biasing voltage received at a control electrode of the biasing transistor, and a biasing voltage generator for generating the biasing voltage. The biasing voltage generator includes a feedback voltage regulation structure adapted track changes in a threshold voltage of the biasing transistor, so as to keep the operating voltage at the accession electrode of the memory cell storage element substantially stable against operating condition changes.
Abstract:
A sensing circuit (120) for sensing currents, including: a measure circuit branch (132i), having a measure node for receiving an input current (Ic) to be sensed, for converting the input current into a corresponding input voltage (V−); at least one comparison circuit branch (132o), having a comparison node for receiving a comparison current (Igs), for converting the comparison current into a corresponding comparison voltage (V+); and at least one voltage comparator (140) for comparing the input and comparison voltages, and a comparison current generating circuit (N3s, 135; N3s, 135′; N3s, 135″) for generating the comparison current based on a reference current (Ir). The comparison current generating circuit includes at least one voltage generator (135; 135′; 135″). A memory device using the sensing circuit and a method are also provided.
Abstract translation:一种用于感测电流的感测电路(120),包括:测量电路分支(132i),具有用于接收待感测的输入电流(Ic)的测量节点,用于将输入电流转换成对应的输入电压(V- ); 至少一个比较电路分支(132o),具有用于接收比较电流(Igs)的比较节点,用于将比较电流转换成对应的比较电压(V +); 以及用于比较输入和比较电压的至少一个电压比较器(140)和用于产生比较电流的比较电流产生电路(N 3 s,135; N 3 s,135'; N 3 s,135“) 基于参考电流(Ir)。 比较电流产生电路包括至少一个电压发生器(135; 135'; 135“)。 还提供了使用感测电路的存储器件和方法。
Abstract:
A ferroelectric semiconductor memory includes an arrangement of memory units comprising at least one row of memory units. The memory units of the at least one row are associated with a respective word line of the arrangement. The arrangement of memory unit includes a plurality of local word lines branching off from the word line associated with the at least one row, each local word line being connected to a respective group of memory units of the line. Selective connection means allow to selectively connect one of the local word lines to the respective word line. The arrangement of memory units further includes a plurality of local plate biasing lines, each one associated with the memory units of a respective group of memory units, for selectively driving the memory units of the respective groups.
Abstract:
The present invention concerns an electrically programmable memory and a method for writing within this memory. In order to avoid the degradation of information in a memory cell following a number of write cycles in the other cells of the same row, the present invention includes a sequence to be carried out before each write cycle of a word within a row. A systematic reading of all the words of a row by using three different read reference potentials is performed in order to find a cell that gives non-compatibility results between any two of the three read cycles. The words of the row are stored in a register. If a non-compatible result is found, which indicates a degradation of information in the row, a systematic re-write of all the words of the row is carried out.
Abstract:
The disclosure relates to an integrated circuit comprising a data buffer circuit comprising first and second transistors coupled to a contact pad and third and fourth transistors. A first bias voltage is applied on a conduction terminal of the third transistor and a second bias voltage is applied on a conduction terminal of the fourth transistor. A third bias voltage less than the second bias voltage is applied on a control terminal of the first transistor and a fourth bias voltage greater than the first bias voltage is applied on a control terminal of the second transistor. Application notably for the production of a so-called “High Speed” USB port.
Abstract:
The disclosure relates to an integrated circuit comprising a data buffer circuit comprising first and second transistors coupled to a contact pad and third and fourth transistors. A first bias voltage is applied on a conduction terminal of the third transistor and a second bias voltage is applied on a conduction terminal of the fourth transistor. A third bias voltage less than the second bias voltage is applied on a control terminal of the first transistor and a fourth bias voltage greater than the first bias voltage is applied on a control terminal of the second transistor. Application notably for the production of a so-called “High Speed” USB port.
Abstract:
A non-volatile memory includes word lines providing access to memory cells, a word-line decoder applying an activation signal corresponding to an input address to a word line, a converter reproducing the activation signal on outputs by lowering its voltage level, and an encoding circuit that includes transistors with a switching threshold that is lower than the voltage level of the outputs and coupled so as to generate an output address specific to an activated word line if this word line is the only one activated, such that a test circuit generates an error signal if the input address differs from the output address. In such a configuration, the area of silicon occupied by a test circuit can be reduced.