Abstract:
Process and apparatus for methanol reforming in producing hydrogen gas for electric vehicle fuel cells in which the gas mixture to be reformed is passed through a catalyst-containing reaction compartment. The active length and/or the active inlet cross-section of an intake-side reaction compartment section which is temperature-controlled for high methanol conversion can be set as a function of the throughput of gas mixture to be reformed. Thereby, an essentially constant residence period of the gas mixture to be reformed results in the reaction compartment section which is temperature-controlled for high methanol conversion. The methanol reforming may thus be carried out even in the case of markedly fluctuating throughputs of gas mixture to be reformed with a constant level of methanol conversion rate and constantly low formation of undesirable carbon monoxide.
Abstract:
Process and apparatus for methanol reforming in producing hydrogen gas for electric vehicle fuel cells in which the gas mixture to be reformed is passed through a catalyst-containing reaction compartment. The active length and/or the active inlet cross-section of an intake-side reaction compartment section which is temperature-controlled for high methanol conversion can be set as a function of the throughput of gas mixture to be reformed. Thereby, an essentially constant residence period of the gas mixture to be reformed results in the reaction compartment section which is temperature-controlled for high methanol conversion. The methanol reforming may thus be carried out even in the case of markedly fluctuating throughputs of gas mixture to be reformed with a constant level of methanol conversion rate and constantly low formation of undesirable carbon monoxide.
Abstract:
A method and a system meters a supply of methanol and/or water out of a storage reservoir to a fuel-cell system by way of a conveying conduit with a metering valve. A constant mass flow is conveyed out of the storage reservoir into the conveying conduit via a conveying pump. The differential pressure between the conveying conduit and fuel-cell system is set at a predetermined value via a differential-pressure controller which is arranged in a return conduit provided between the conveying conduit and storage reservoir. The methanol and/or water supplied can be set, for example, by varying the opening and closing times of a solenoid valve. A second metering stage can be provided in the return conduit downstream of the first metering stage. When two separate metering systems are used, a common pump motor can be employed.
Abstract:
A moisture exchange module has a bundle of moisture-permeable hollow fiber membranes and at least one line element for supplying a gas stream that flows through the hollow fibers in an inner flow. The at least one line element opens out into an inflow region, which is of at least approximately the same cross section as the bundle of hollow fiber membranes. According to the present invention, the at least one line element opens out into the inflow region at an angle of from 60° to 120° with respect to the longitudinal axis of the bundle of hollow fiber membranes without the longitudinal axes of the one line element and of the bundle of hollow fiber membranes intersecting one another. An annular diverter means for diverting the gas flow are provided between the cross section of the line elements through which gas can flow and the inflow region. The diverter means are arranged in such a way that an annular gap is formed, which annular gap is connected to the at least one line element and, on its side remote from the bundle of hollow fiber membranes, is connected to the inflow region.
Abstract:
A reactor system for reacting a hydrocarbon or hydrocarbon derivative charging material comprises a catalyst-coated reaction chamber, to which a reaction educt stream can be fed through a reaction chamber inlet, and electric heating means. The reaction chamber inlet has a flat, electrically heatable, catalyst-coated, and reaction educt stream-permeable heater, which covers at least partially the inlet cross section of the reaction chamber inlet and through which the educts for reacting the charging material can be fed at least in a start operating phase of the reactor system. An electric heater may be provided in front of the reaction chamber inlet, for the purpose of heating at least one reaction educt in a start operating phase and there are means for point-by-point injection of at least one reaction educt, heated in the heater, into the reaction chamber.
Abstract:
A moisture exchange module includes a bundle of moisture-permeable hollow fibre membranes through which a first gas stream can flow. The bundle of hollow fibre membranes is arranged in a housing, the housing being provided with line elements for supplying and discharging a second gas stream, which flows around the hollow fibre membranes. Between the bundle of hollow fibre membranes and the housing there is at least one flow space, which extends over at least approximately the entire length of that region of the bundle of hollow fibre membranes through which the first gas stream can flow. The at least one flow space surrounds only a small part of the circumference of the bundle of hollow fibre membranes, so that ultimately a moisture exchange operated in cross-current mode is formed. This can preferably be used for the humidification of feed air for fuel cell systems.
Abstract:
In a method and apparatus for selective catalytic oxidation of carbon monoxide, the gas mixture and an additionally added oxidizing gas are conducted through a reactor containing the catalyst. Oxidizing gas is added at several points along the mixed gas flow path with a controlled or regulated through flow volume. The mixed gas stream is cooled passively by static mixing structures located in the inlet area of the CO-oxidation reactor. By controlling exothermal CO oxidation along the reactor path, a very variable process guidance is provided, that can be adjusted to individual situations.
Abstract:
This invention relates to a sound wave generator with a variable effective aperture angle according to the electromagnetic principle for therapeutic applications and particularly for the contactless smashing of a concrement situated in the body of a living being. The sound wave generator includes a flat coil and a metallic diaphragm which is insulated with respect to the flat coil. The flat coil includes three separately activatable and concentrically arranged coil sections. The sum of the areas of the inner coil section and the center coil section is equal to the sum of the areas of the central coil section and the outer coil section. By means of the varying activation of the coil sections, the aperture of the shock wave source can be changed so that the focus geometry and the peak pressures can be varied for different applications, particularly kidney and gallbladder lithotrity.
Abstract:
The invention relates to a fuel cell drive for a motor vehicle, in particular a utility vehicle, with a fuel cell assembly (1) as an energy source and a fuel cell cooling assembly (2) for adjustably cooling the fuel cell assembly (1) in dependence on the load. The fuel cell assembly (1) comprises at least two fuel cell units (3.1, 3.2) that can be controlled independently from each with a number of fuel cells that are connected in series. The fuel cell cooling assembly (2) comprises, for each of said fuel cell units (3.1, 3.2), an individual fuel cell cooling unit (4.1, 4.2) by means of which the fuel cells of the respective fuel cell unit (3.1, 3.2) can be cooled in dependence on at least one control variable.
Abstract:
A method and a system for resistance seam welding of a foil and at least one foil support of a fuel cell system. During welding, the thin foil, together with the thicker foil support, is moved relative to the roller electrode while resting on a flat support element. In a suitable welding system, a counter-electrode is designed as a flat support element, such as a welding strip, that is displaceable relative to the roller electrode, the roller electrode being in rolling contact with the foil support, but not with the foil. Depending on whether one foil is to be welded to one or two foil frames, the support element may be designed having a high or a low specific electric resistance.