Abstract:
Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
Abstract:
A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j−k−2l−3m−4n=w; 0.8≤t≤1; −3.5≤u≤4; 3.5≤v≤4; (−0.2)≤w≤0.2 and 0≤m 0.125 v.
Abstract:
A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC═N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j−k−2l−3m−4n=w; 0.8≤t≤1; 3.5≤u≤4; 3.5≤v≤4; (−0.2)≤w≤0.2 and 0≤m 0.125 v.
Abstract:
A lighting device includes a radiation source that emits primary radiation in the wavelength range of 300 nm to 570 nm, a first phosphor arranged in a beam path of the primary radiation source that converts at least part of the primary radiation into secondary radiation in an orange to red wavelength range of 570 nm to 800 nm, and filter particles arranged in a beam path of the secondary radiation that absorb at least part of the secondary radiation.
Abstract:
A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1−a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1-a)Si2Al2N61.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.
Abstract:
An optoelectronic semiconductor component is disclosed. In an embodiment, the semiconductor component includes at least one optoelectronic semiconductor chip for generating primary radiation in a near-ultraviolet or in a visible spectral range, at least one phosphor for partial or complete conversion of the primary radiation into a longer-waved secondary radiation which is in the visible spectral range and at least one filter substance for partial absorption of the secondary radiation, wherein the phosphor and the filter substance are closely connected to the semiconductor chip.
Abstract:
A lighting device includes a radiation source that emits primary radiation in the wavelength range of 300 nm to 570 nm, a first phosphor arranged in a beam path of the primary radiation source that converts at least part of the primary radiation into secondary radiation in an orange to red wavelength range of 570 nm to 800 nm, and filter particles arranged in a beam path of the secondary radiation that absorb at least part of the secondary radiation.
Abstract:
A radiation-emitting component comprising a ceramic material, comprising a garnet having the composition represented by the formula A3-xB5O12:Dx and a barium-containing oxide. In the garnet A3-xB5O12:Dx, A is selected from lutetium, yttrium, gadolinium, terbium, scandium, another rare earth metal or mixtures thereof. B is selected from aluminum, scandium, gallium, indium, boron or mixtures thereof. D is at least one dopant selected from chromium, manganese and rare earth metals, particularly cerium, praseodymium or gadolinium. The dopant is present with x is 0≦x≦2.