摘要:
A physical vapor transport system includes a growth chamber charged with source material and a seed crystal in spaced relation, and at least one capsule having at least one capillary extending between an interior thereof and an exterior thereof, wherein the interior of the capsule is charged with a dopant. Each capsule is installed in the growth chamber. Through a growth reaction carried out in the growth chamber following installation of each capsule therein, a crystal is formed on the seed crystal using the source material, wherein the formed crystal is doped with the dopant.
摘要:
In a method of SiC single crystal growth, a SiC single crystal seed and polycrystalline SiC source material are provided in spaced relation inside of a graphite growth crucible along with at least one compound capable of forming SiO gas in the growth crucible. The growth crucible is heated whereupon the gaseous SiO forms and reacts with carbon in the growth crucible thereby avoiding the introduction of carbon into the SiC single crystal before and during the growth thereof and the SiC source material vaporizes and is transported via a temperature gradient in the growth crucible to the seed crystal where it precipitates and forms a SiC single crystal.
摘要:
In a physical vapor transport method and system, a growth chamber charged with source material and a seed crystal in spaced relation is provided. At least one capsule having at least one capillary extending between an interior thereof and an exterior thereof, wherein the interior of the capsule is charged with a dopant, is also provided. Each capsule is installed in the growth chamber. Through a growth reaction carried out in the growth chamber following installation of each capsule therein, a crystal is formed on the seed crystal using the source material, wherein the formed crystal is doped with the dopant.
摘要:
In SiC sublimation crystal growth, a crucible is charged with SiC source material and SiC seed crystal in spaced relation and a baffle is disposed in the growth crucible around the seed crystal. A first side of the baffle in the growth crucible defines a growth zone where a SiC single crystal grows on the SiC seed crystal. A second side of the baffle in the growth crucible defines a vapor-capture trap around the SiC seed crystal. The growth crucible is heated to a SiC growth temperature whereupon the SiC source material sublimates and forms a vapor which is transported to the growth zone where the SiC crystal grows by precipitation of the vapor on the SiC seed crystal. A fraction of this vapor enters the vapor-capture trap where it is removed from the growth zone during growth of the SiC crystal.
摘要:
A physical vapor transport growth system includes a growth chamber charged with SiC source material and a SiC seed crystal in spaced relation and an envelope that is at least partially gas-permeable disposed in the growth chamber. The envelope separates the growth chamber into a source compartment that includes the SiC source material and a crystallization compartment that includes the SiC seed crystal. The envelope is formed of a material that is reactive to vapor generated during sublimation growth of a SiC single crystal on the SiC seed crystal in the crystallization compartment to produce C-bearing vapor that acts as an additional source of C during the growth of the SiC single crystal on the SiC seed crystal.
摘要:
A sublimation-grown silicon carbide (SiC) single crystal boule includes a deep level dopant introduced into the SiC single crystal boule during sublimation-growth thereof such that in a continuous section of the boule that is not less than 50% of a continuous length of said boule, the deep level dopant concentration at the boule center varies by not more than 25% from the average concentration of the deep level dopant in the continuous section of the boule.
摘要:
In the growth of a SiC boule, a growth guide is provided inside of a growth crucible that is charged with SiC source material at a bottom of the crucible and a SiC seed crystal at a top of the crucible. The growth guide has an inner layer that defines at least part of an opening in the growth guide and an outer layer that supports the inner layer in the crucible. The opening faces the source material with the seed crystal positioned at an end of the opening opposite the source material. The inner layer is formed from a first material having a higher thermal conductivity than the second, different material forming the outer layer. The source material is sublimation grown on the seed crystal in the growth crucible via the opening in the growth guide to thereby form the SiC boule on the seed crystal.
摘要:
In a crystal growth method, a seed crystal 8 and a source material 4 are provided in spaced relation inside of a growth crucible 6. Starting conditions for the growth of a crystal 14 in the growth crucible 6 are then established therein. The starting conditions include: a suitable gas inside the growth crucible 6, a suitable pressure of the gas inside the growth crucible 6, and a suitable temperature in the growth crucible 6 that causes the source material 4 to sublimate and be transported via a temperature gradient in the growth crucible 6 to the seed crystal 8 where the sublimated source material precipitates. During growth of the crystal 14 inside the growth crucible 6, at least one of the following growth conditions are intermittently changed inside the growth crucible 6 a plurality of times: the gas in the growth crucible 6, the pressure of the gas in the growth crucible 6, and the temperature in the growth crucible 6.
摘要:
In a crystal growth method, a seed crystal 8 and a source material 4 are provided in spaced relation inside of a growth crucible 6. Starting conditions for the growth of a crystal 14 in the growth crucible 6 are then established therein. The starting conditions include: a suitable gas inside the growth crucible 6, a suitable pressure of the gas inside the growth crucible 6, and a suitable temperature in the growth crucible 6 that causes the source material 4 to sublimate and be transported via a temperature gradient in the growth crucible 6 to the seed crystal 8 where the sublimated source material precipitates. During growth of the crystal 14 inside the growth crucible 6, at least one of the following growth conditions are intermittently changed inside the growth crucible 6 a plurality of times: the gas in the growth crucible 6, the pressure of the gas in the growth crucible 6, and the temperature in the growth crucible 6.