Abstract:
Thermal mitigation features may be included in a Universal Serial Bus (USB) cable assembly or in the USB receptacle portion of a device. In one aspect, one or both ends of a USB cable jacket may have greater thermal conductivity than the portion between them. The portion having the greater thermal conductivity may dissipate excess heat from the cable into the environment. In another aspect, a USB cable connector or the USB receptacle portion of a device may include a thermoelectric heat pump. The thermoelectric heat pump may move excess heat from the cable assembly or receptacle into a portion of the cable assembly or device that dissipates the heat into the environment.
Abstract:
Alternate sideband signaling in a Peripheral Component Interconnect (PCI) express (PCIE) link may be enabled over existing sideband lines in a conventional PCIE link. For example, the default sideband communication of PCIE may be changed to a Universal Asynchronous receiver/transmitter (UART), line multiplex UART (LM-UART), serial peripheral interface (SPI), I2C, or I3C mode of communication. This change may be negotiated between the host and slave of the communication link, with a transition occurring after the negotiation concludes. The new mode of communication may include or encode the conventional PCIE sideband signals.
Abstract:
A finite state machine is provided that both serializes virtual GPIO signals and messaging signals and that deserializer virtual GPIO signals and the messaging signals. The finite state machine frames the serialized virtual GPIO signals and messaging signals into frames each demarcated by a start bit and an end bit.
Abstract:
System, methods, and apparatuses are described that facilitate a first device to transmit/retransmit a message to a second device. The first device transmits a first message to the second device. The first device then receives a second message and identifies a hit of the second message indicating an originator of the second message. If the bit indicates the first device as the originator of the second message, then the second message is an echo of the first message, Reception of the echo indicates that the second device is in a sleep state. Accordingly, the first device waits for the second device to wake and retransmits the first message to the second device to ensure that any packets lost during the original transmission of the first message (when the second device was asleep) are now retransmitted while the second device is known to be awake.
Abstract:
Extended message signaled interrupts (MSI) data are disclosed. In one aspect, MSI bits are modified to include a system level identifier. In an exemplary aspect, an upper sixteen bits of the MSI message data are modified to be the system level identifier. By providing the system level identifier within the MSI message data, an interrupt controller can verify the interrupt source.
Abstract:
System, methods, and apparatuses are described that facilitate a first device to transmit/retransmit a message to a second device. The first device transmits a first message to the second device. The first device then receives a second message and identifies a bit of the second message indicating an originator of the second message. If the bit indicates the first device as the originator of the second message, then the second message is an echo of the first message. Reception of the echo indicates that the second device is in a sleep state. Accordingly, the first device waits for the second device to wake and retransmits the first message to the second device to ensure that any packets lost during the original transmission of the first message (when the second device was asleep) are now retransmitted while the second device is known to be awake.
Abstract:
Coherency driven enhancements to a PCIe transaction layer are disclosed. In an exemplary aspect, a coherency agent is added to a PCIe system to support a relaxed consistency model for use of memory therein. In particular, endpoints can request ownership of portions of the memory to read from and write to the memory. The coherency agent assigns an address range including the requested portions. The requesting endpoint copies the contents of the memory corresponding to the assigned address range into local endpoint memory to perform read and write operations locally. The owning endpoint may provide an updated snapshot of the copied memory contents upon request. At completion of use of the copied memory contents, or upon request from the coherency agent, ownership of the address range reverts back to the root complex, and the endpoint sends the updated contents back to the address range in the system memory element.
Abstract:
Communicating transaction-specific attributes in a peripheral component interconnect express (PCIe) system is disclosed. A PCIe system includes a host system and at least one PCIe endpoint. The PCIe endpoint is configured to determine one or more transaction-specific attributes that can improve efficiency and performance of a predefined host transaction. In this regard, in one aspect, the PCIe endpoint encodes the transaction-specific attributes in a transaction layer packet (TLP) prefix of at least one PCIe TLP and provides the PCIe TLP to the host system. In another aspect, a PCIe root complex (RC) in the host system is configured to detect and extract the transaction-specific attributes from the TLP prefix of the PCIe TLP received from the PCIe endpoint. By communicating the transaction-specific attributes in the TLP prefix of the PCIe TLP, it is possible to improve efficiency and performance of the PCIe system without violating the existing PCIe standard.
Abstract:
Alternate sideband signaling in a Peripheral Component Interconnect (PCI) express (PCIE) link may be enabled over existing sideband lines in a conventional PCIE link. For example, the default sideband communication of PCIE may be changed to a Universal Asynchronous receiver/transmitter (UART), line multiplex UART (LM-UART), serial peripheral interface (SPI), I2C, or I3C mode of communication. This change may be negotiated between the host and slave of the communication link, with a transition occurring after the negotiation concludes. The new mode of communication may include or encode the conventional PCIE sideband signals.
Abstract:
A system for low-speed Peripheral Component Interconnect (PCI) Express (PCIe) systems, while maintaining both lower level physical layer (PHY) pin requirements and upper layer functionality being capable of both differential and single-ended signaling modes optimized for power savings. An apparatus includes an integrated circuit (IC) adapted to be connected to a Peripheral Component Interconnect (PCI) Express (PCIe) bus. The IC includes a control block selects between differential and single-ended signaling for the PCIe bus. The single-ended signaling is transmitted through existing pins of the IC that are coupled to the PCIe bus for differential signaling when single-ended signaling is selected for the PCIe bus.