Abstract:
A static, ternary content addressable memory (TCAM) includes a key cell and a mask cell coupled to intermediate match lines. The key cell is coupled to a first pull-down transistor and a first pull-up transistor. The mask cell is coupled to a second pull-down transistor and a second pull-up transistor. The first pull-down transistor and second pull-down transistor are connected in parallel and the first pull-up transistor and second pull-up transistor are connected in series. A match line output is also coupled to the first pull-down transistor and second pull-down transistor and further coupled to the first pull-up transistor and second pull-up transistor.
Abstract:
A method within a ternary content addressable memory (TCAM) includes receiving a match line output from a previous TCAM stage at a gate of a pull-up transistor of a current TCAM stage and at a gate of a pull-down transistor of the current TCAM stage. The method sets a match line bar at the current TCAM stage to a low value, via the pull-down transistor, when the match line output from the previous TCAM stage indicates a mismatch. The method also sets the match line bar at the current TCAM stage to a high value, via the pull-up transistor, when the match line output from the previous TCAM stage indicates a match.
Abstract:
A write driver for a memory circuit includes a control circuit configured to: operate a first push-pull driver to generate a first drive signal in a first voltage domain at a first node based on an input signal in a second domain and in response to a mode select signal being in a first mode, wherein the first drive signal is at a same logic level as the input signal; operate a second push-pull driver to generate a second drive signal in the first voltage domain at a second node based on the input signal and in response to the mode select signal being in the first mode, wherein the second drive signal is at a complement logic level with respect to the input signal; and operate the first and second push-pull drivers to float the first and second nodes in response to the mode select signal being in a second mode.
Abstract:
An apparatus and method of employing mutually exclusive write and read clocks in scan capture mode for testing digital interfaces. The apparatus includes a first circuit and a first clock generator configured to generate a first clock signal for transferring a test sample from an input to an output of the first circuit in response to the first clock signal during each of a first set of scan capture cycles; a second circuit and a second clock generator configured to generate a second clock signal for transferring the test sample from an input to an output of the second circuit in response to the second clock signal during each of a second set of scan capture cycle; the first clock signal being suppressed during each scan capture cycle of the second set, and the second clock signal being suppressed during each scan capture cycle of the first set.
Abstract:
In one embodiment, a voltage level shifter includes a first NOR gate having a first input configured to receive a first input signal in a first power domain, a second input configured to receive an enable signal in a second power domain, a third input, and an output. The voltage level shifter also includes a second NOR gate having a first input configured to receive a second input signal in the first power domain, a second input configured to receive the enable signal in the second power domain, a third input coupled to the output of the first NOR gate, and an output coupled to the third input of the first NOR gate. The first and second NOR gates are powered by a supply voltage of the second power domain.
Abstract:
A level-shifter is provided with PMOS stacks that are selectively weakened or strengthened depending upon the binary state of an input signal.
Abstract:
A static, ternary content addressable memory (TCAM) includes a key cell and a mask cell coupled to intermediate match lines. The key cell is coupled to a first pull-down transistor and a first pull-up transistor. The mask cell is coupled to a second pull-down transistor and a second pull-up transistor. The first pull-down transistor and second pull-down transistor are connected in parallel and the first pull-up transistor and second pull-up transistor are connected in series. A match line output is also coupled to the first pull-down transistor and second pull-down transistor and further coupled to the first pull-up transistor and second pull-up transistor.
Abstract:
A write assist driver circuit is provided that assists a memory cell (e.g., volatile memory bit cell) in write operations to keep the voltage at the memory core sufficiently high for correct write operations, even when the supply voltage is lowered. The write assist driver circuit may be configured to provide a memory supply voltage VddM to a bit cell core during a standby mode of operation. In a write mode of operation, the write assist driver circuit may provide a lowered memory supply voltage VddMlower to the bit cell core as well as to at least one of the local write bitline (lwbl) and local write bitline bar (lwblb). Additionally, the write assist driver circuit may also provide a periphery supply voltage VddP to a local write wordline (lwwl), where VddP≧VddM>VddMlower.
Abstract:
Various aspects of a fast, energy efficient write driver capable of efficient operation in a dual-voltage domain memory architecture are provided herein. Specifically, various aspects of the write driver described herein combine a high speed driver with voltage level shifting capabilities that may be implemented efficiently in reducing use of silicon area while using lower power. The write driver circuit shifts or adjusts voltage levels between a first voltage domain to a second voltage domain. In one example, the write driver circuit is coupled to a global write bitline and a local write bitline that is coupled to one or more bitcells (of SRAM memory). The write driver circuit converts a first voltage level at the global write bitline to a second voltage level at the local write bitline during a write operation.
Abstract:
A static, ternary content addressable memory (TCAM) includes a key cell and a mask cell coupled to intermediate match lines. The key cell is coupled to a first pull-down transistor and a first pull-up transistor. The mask cell is coupled to a second pull-down transistor and a second pull-up transistor. The first pull-down transistor and second pull-down transistor are connected in parallel and the first pull-up transistor and second pull-up transistor are connected in series. A match line output is also coupled to the first pull-down transistor and second pull-down transistor and further coupled to the first pull-up transistor and second pull-up transistor.