Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a network node may receive application data for transmission via an additional network node. The network node may provide the application data to the additional network node, the application data having one or more indications of groupings into application data units (ADUs) added before being provided to the additional network node. Numerous other aspects are described.
Abstract:
The disclosure provides various methods and apparatus useful for mapping wireless nodes using a drone and aligning the body of the drone with an antenna of the wireless node. A method includes mapping, by an apparatus, a space including one or more locations of one or more wireless nodes, determining whether the apparatus is in proximity to a first wireless node of the one or more wireless nodes, determining an orientation of an antenna of the first wireless node, and in response to determining that the apparatus is in proximity to the first wireless node and determining the orientation of the antenna of the first wireless node, adjusting a six-degree-of-freedom (6DoF) orientation of the apparatus based on the determined orientation of the antenna of the first wireless node. The apparatus may be an autonomous drone.
Abstract:
The disclosure is directed to group communications in a mixed casting services wireless communication system. An embodiment detects a loss of multicast coverage at a user equipment (UE), notifies a server of the loss of multicast coverage, wherein the server is configured to provide a desired multicast communication, and requests that communications related to the desired multicast communication be conducted on a unicast service using application layer signaling independent of link layer signaling.
Abstract:
In an embodiment, a first MBSFN area is configured to support a higher data rate than a lower data rate portion of a second MBSFN area, and an application server executes a common data rate mode by delivering a data stream for a group session to the first and second MBSFN areas via IP multicast at a common data rate that is regulated by quality feedback. In a further embodiment, the application server exits the common data rate mode and delivers the data stream to the first MBSFN area via IP multicast at an MBSFN-specific data rate that is higher than the common data rate, while delivering the data stream to the lower data rate portion of the second MBSFN area via IP unicast. In another further embodiment, the application server resumes the common data rate mode.
Abstract:
Methods and systems are disclosed for preemptively establishing a multicast bearer. An embodiment determines whether adding a multicast session to a plurality of multicast bearers will exceed a high bandwidth threshold, requests setup of a new multicast bearer if adding the multicast session will exceed the high bandwidth threshold, and hosts the multicast session on an available one of the plurality of multicast bearers or the new multicast bearer.
Abstract:
In an embodiment, a network device obtains a plurality of data packets that are each associated with one of a plurality of different streams, wherein each of the plurality of obtained data packets includes a header portion with stream-specific routing information. The network device strips the stream-specific routing information from the plurality of obtained data packets to produce a plurality of stream-specific payload portions, which are merged into a shared payload portion of a stream-multiplexed data packet that includes common routing information for the plurality of streams in a common header portion. The network device transmits the stream-multiplexed packet to a target device, and the target device determines whether any of the plurality of different streams are relevant to the target UE based on stream-mapping information contained in the stream-multiplexed packet, and selectively decodes and processes the stream-specific payload portions corresponding based on the determination.
Abstract:
The disclosure is directed to preemptively establishing a multicast bearer. An embodiment determines whether adding a multicast session to a plurality of multicast bearers will exceed a high bandwidth threshold, requests setup of a new multicast bearer if adding the multicast session will exceed the high bandwidth threshold, and hosts the multicast session on an available one of the plurality of multicast bearers or the new multicast bearer.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a network node, an indication of one or more data radio bearers between the UE and the network node that are configured for application data unit (ADU) traffic. The UE may communicate, with an application server, one or more ADU traffic flows through the network node using the one or more data radio bearers. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A wireless communications entity, such as a user equipment (UE), a base station, a network core, or an application server, may identify a round-trip time (RTT) latency requirement that may pertain to a round-trip latency in wireless communications between the UE and the base station. The wireless communications entity may identify a one one-way directional delay budget that satisfies the RTT latency requirement for an application of an application server. The application server may be in communication with the UE via the base station. The wireless communications entity may modify a value of the one-way directional delay budget and transmit a message that is associated with the modified value of the one one-way directional delay budget.
Abstract:
Sounding Reference Signal (SRS) transmission for positioning can be utilized on flexible symbols. Techniques disclosed for transmitting a reference signal for positioning comprise receiving, from a serving base station, a message comprising an indication to transmit a SRS on a set of symbols of an orthogonal frequency division multiplexing (OFDM) slot. Techniques may also comprise determining the SRS is to be used for positioning, and receiving, from the serving base station, downlink control information (DCI) having a slot format indicator (SFI) that designates a subset of the set of symbols as flexible. Techniques may also comprise transmitting the SRS on at least a portion of the subset.