Abstract:
An improvement is achieved in the performance of a semiconductor device. Over the main surface of a semiconductor substrate for the n-type base of an IGBT, an insulating layer is formed. In a trench of the insulating layer, an n-type semiconductor layer is formed over the semiconductor substrate and, on both sides of the semiconductor layer, gate electrodes are formed via gate insulating films. In an upper portion of the semiconductor layer, a p-type semiconductor region for a p-type base and an n+-type semiconductor region for an n-type emitter are formed. Under the gate electrodes, parts of the insulating layer are present. The side surfaces of the gate electrodes opposite to the side surfaces thereof facing the semiconductor layer via the gate insulating films are adjacent to the insulating layer.
Abstract:
Techniques capable of improving the yield of IGBTs capable of reducing steady loss, turn-off time, and turn-off loss are provided. Upon formation of openings in an interlayer insulting film formed on a main surface of a substrate, etching of a laminated insulating film of a PSG film and an SOG film and a silicon oxide film is once stopped at a silicon nitride film. Then, the silicon nitride film and the silicon oxide film are sequentially etched to form the openings. As a result, the openings are prevented from penetrating through an n-type source layer and a p+-type emitter layer having a thickness of 20 to 100 nm and reaching the substrate.
Abstract:
A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.