Abstract:
Embodiments disclosed in the detailed description relate to a pseudo-envelope follower power management system used to manage the power delivered to a linear RF power amplifier.
Abstract:
A direct current (DC) voltage converter configured to transition between operation modes is disclosed. A voltage selection circuitry is provided in a DC voltage conversion circuit to control a buck-boost converter that generates a DC output voltage. As opposed to conventional methods of switching the buck-boost converter between a buck mode and a boost mode based on a single switching threshold, the voltage selection circuitry is configured to switch the buck-boost converter between the buck mode and the boost mode based on multiple voltage thresholds. Each of the multiple voltage thresholds defines a respective range for the DC output voltage. By controlling the buck-boost converter based on multiple voltage thresholds, it is possible to provide a smoother transition between the buck mode and the boost mode, thus reducing voltage errors in the DC output voltage and improving reliability of the DC voltage conversion circuit.
Abstract:
Power supply circuitry, which includes a parallel amplifier and a parallel amplifier power supply, is disclosed. The power supply circuitry operates in either an average power tracking mode or an envelope tracking mode. The parallel amplifier power supply provides a parallel amplifier power supply signal. The parallel amplifier regulates an envelope power supply voltage based on an envelope power supply control signal using the parallel amplifier power supply signal, which provides power for amplification. During the envelope tracking mode, the envelope power supply voltage at least partially tracks an envelope of an RF transmit signal and the parallel amplifier power supply signal at least partially tracks the envelope power supply control signal. During the average power tracking mode, the envelope power supply voltage does not track the envelope of the RF transmit signal.
Abstract:
A switch mode power supply converter, a parallel amplifier, and a parallel amplifier output impedance compensation circuit are disclosed. The switch mode power supply converter provides a switching voltage and generates an estimated switching voltage output, which is indicative of the switching voltage. The parallel amplifier generates a power amplifier supply voltage at a power amplifier supply output based on a combination of a VRAMP signal and a high frequency ripple compensation signal. The parallel amplifier output impedance compensation circuit provides the high frequency ripple compensation signal based on a difference between the VRAMP signal and the estimated switching voltage output.
Abstract:
A switch mode power supply converter and a parallel amplifier are disclosed. The switch mode power supply converter is coupled to a modulated power supply output and the parallel amplifier has a parallel amplifier output coupled to the modulated power supply output. Further, the parallel amplifier has a group of output stages, such that each output stage is directly coupled to the parallel amplifier output and each output stage receives a separate supply voltage.
Abstract:
A buck-boost DC-DC converter, which includes converter control circuitry, converter switching circuitry, and a first inductive element, is disclosed. The converter control circuitry provides a buck mode timing signal and a boost mode timing signal. The converter switching circuitry provides a switching output signal. During a buck mode of the buck-boost DC-DC converter, when a buck pulse-width of the switching output signal is less than a buck pulse-width threshold, the buck pulse-width is limited based on both the buck mode timing signal and the boost mode timing signal. During a boost mode of the buck-boost DC-DC converter, when a boost pulse-width of the switching output signal is less than a boost pulse-width threshold, the boost pulse-width is limited based on both the buck mode timing signal and the boost mode timing signal. The first inductive element receives and filters the switching output signal to provide a converter output signal.
Abstract:
A switch mode power supply converter, a parallel amplifier, and a parallel amplifier output impedance compensation circuit are disclosed. The switch mode power supply converter provides a switching voltage and generates an estimated switching voltage output, which is indicative of the switching voltage. The parallel amplifier generates a power amplifier supply voltage at a power amplifier supply output based on a compensated VRAMP signal. The parallel amplifier output impedance compensation circuit provides the compensated VRAMP signal based on a combination of a VRAMP signal and a high frequency ripple compensation signal. The high frequency ripple compensation signal is based on a difference between the VRAMP signal and the estimated switching voltage output.
Abstract:
This disclosure relates to radio frequency (RF) power converters and methods of operating the same. In one embodiment, an RF power converter includes an RF switching converter, a low-drop out (LDO) regulation circuit, and an RF filter. The RF filter is coupled to receive a pulsed output voltage from the RF switching converter and a supply voltage from the LDO regulation circuit. The RF filter is operable to alternate between a first RF filter topology and a second RF filter topology. In the first RF filter topology, the RF filter is configured to convert the pulsed output voltage from a switching circuit into the supply voltage. The RF filter in the second RF filter topology is configured to filter the supply voltage from the LDO regulation circuit to reduce a ripple variation in a supply voltage level of the supply voltage. As such, the RF filter provides greater versatility.
Abstract:
A switch mode power supply converter, a parallel amplifier, and a parallel amplifier output impedance compensation circuit are disclosed. The switch mode power supply converter provides a switching voltage and generates an estimated switching voltage output, which is indicative of the switching voltage. The parallel amplifier generates a power amplifier supply voltage at a power amplifier supply output based on a combination of a VRAMP signal and a high frequency ripple compensation signal. The parallel amplifier output impedance compensation circuit provides the high frequency ripple compensation signal based on a difference between the VRAMP signal and the estimated switching voltage output.
Abstract:
An envelope tracking power supply and an offset capacitive element are disclosed. The offset capacitive element is coupled between a switching output and an analog output of the envelope tracking power supply, which operates in one of an envelope tracking mode, a transition mode, and an average power tracking mode. During the envelope tracking mode, the envelope tracking power supply provides an envelope power supply signal using both the switching output and the analog output. During the transition mode, the envelope tracking power supply drives a voltage across the offset capacitive element from a first voltage to a second voltage, such that during a transition from the envelope tracking mode to the transition mode, the offset capacitive element has the first voltage, and during a transition from the transition mode to the average power tracking mode, the offset capacitive element has the second voltage.