Abstract:
A retainer for fastening a component, especially a fuel distributor, via a holding element to an internal combustion engine includes: decoupling elements, a fastening body and a fastening element. The fastening body is fastened to the internal combustion engine with the aid of the fastening element. In addition, the holding element is fastened to the fastening body via the decoupling elements. Moreover, a preloading element is provided that is joined to the fastening body, preloading of the decoupling elements being set by way of a predefined position of the preloading element relative to the fastening body in which the preloading element is joined to the fastening body.
Abstract:
A holder for attachment of a component, in particular a fuel distributor, to an internal combustion engine includes: at least one decoupling element, an attachment body, an attachment element, and a holding element. The attachment body is attached to the internal combustion engine by way of the attachment element. The holding element is attached to the attachment body via the decoupling element. The decoupling element is shaped in such a way that in at least one spatial direction, a nonlinear spring characteristic curve, which describes a correlation of a return force acting on the holding element with a deflection of the holding element relative to the attachment body, is predefined.
Abstract:
A connecting element for connecting a fuel injector of a fuel injection system to a fuel-guiding component includes a base body in which a receiving chamber for a fuel connector of the fuel injector is provided. The fuel connector, which is situated at least partially in the receiving chamber, is supported at least indirectly on the base body. The fuel connector is elastically supported on the base body in a radial direction.
Abstract:
A bearing sleeve for a holder, which is used for fastening a fuel distributor on an add-on structure, includes a first sleeve part and a second sleeve part. The first sleeve part has a rigid sleeve body and a damping element which is integrally connected to the sleeve body of the first sleeve part. The second sleeve part has a rigid sleeve body and a damping element which is integrally connected to the sleeve body of the second sleeve part.
Abstract:
A fluid distributor. The fluid distributor includes a base body, a high pressure output, and a connecting piece which is joined to the base body and is used for the high pressure output. The base body is formed by a forging operation. An interior space of the base body is formed at the base body by a machining operation after the forging operation. The connecting piece is processed by a machining operation. A holding element is provided, that, as a result of the machining operation, an accommodating opening, which leads from an outer side of the connecting piece through a wall of the connecting piece and is used for at least partially accommodating the holding element, and an accommodating space, into which, during assembly, a connector of an injector is at least partially insertable in a mounting direction, are formed at the connecting piece.
Abstract:
A vibration damping system for injection systems of motor vehicles includes an actively controllable actuator element, which is situated at a component of the injection system. The actuator element is situated at the component in such a way that, during operation of the injection system a vibration reduction of the injection system is achieved with the aid of an active control of the actuator element.
Abstract:
A mounting system for fuel injection systems connects a fuel injection valve to a fluid-conveying component and includes a connector piece of the metering valve being inserted at least partly into a receiving space of a connector body of the component; a support part disposed on the connector piece; a decoupling element; a dished disk inserted into a receiving space of the connector body and immobilized along a longitudinal axis of the receiving space relative to the connector body. The support part has a spherical support surface that faces toward a dished surface of the dished disk. The decoupling element is disposed between the spherical support surface of the support part and the dished disk. The connector piece is mounted on the connector body via the support part, decoupling element, and dished disk.
Abstract:
A mounting system for fuel injection systems connects a fuel injection valve to a fluid-conveying component and includes a connector piece of the metering valve being inserted at least partly into a receiving space of a connector body of the component; a support part disposed on the connector piece; a decoupling element; a dished disk inserted into a receiving space of the connector body and immobilized along a longitudinal axis of the receiving space relative to the connector body. The support part has a spherical support surface that faces toward a dished surface of the dished disk. The decoupling element is disposed between the spherical support surface of the support part and the dished disk. The connector piece is mounted on the connector body via the support part, decoupling element, and dished disk.
Abstract:
A suspension mount for fuel-injection systems is used to connect a fuel injector to a fuel distributor. A connecting body having an accommodation space is provided, a fuel connector of the fuel injector being able to be disposed at least partially in the accommodation space. In addition, a joining body is provided that is disposed, at least in sections, partially in at least one recess of the connecting body, the recess being connected to the accommodation space, and on which the fuel connector is able to be supported along a longitudinal axis of the accommodation space. The joining body also has an elastically deformable element, the elastically deformable element being disposed in such a way that the joining body permits elastic support of the fuel connector on the connecting body at least along the longitudinal axis. A fuel-injection system having such a suspension mount is also indicated.
Abstract:
A holder for fastening a manifold of a fuel distributor to an attachment structure includes: a first half shell; a second half shell; a first elastically deformable damping element provided on a retaining region of the first half shell; and a second elastically deformable damping element provided on a retaining region of the second half shell. The half shells are joined to each other for fastening the manifold to the attachment structure, in such a way that the half shells enclose the tubular component and retain the tubular component by the elastic damping elements. The two half shells are joined to each other by a film hinge.