Abstract:
A suspension mount for fuel-injection systems is used to connect a fuel injector to a fuel distributor. A connecting body having an accommodation space is provided, a fuel connector of the fuel injector being able to be disposed at least partially in the accommodation space. In addition, a joining body is provided that is disposed, at least in sections, partially in at least one recess of the connecting body, the recess being connected to the accommodation space, and on which the fuel connector is able to be supported along a longitudinal axis of the accommodation space. The joining body also has an elastically deformable element, the elastically deformable element being disposed in such a way that the joining body permits elastic support of the fuel connector on the connecting body at least along the longitudinal axis. A fuel-injection system having such a suspension mount is also indicated.
Abstract:
A connecting element for fuel injection systems is used for connecting a fuel injector to a fuel-carrying component, in particular a fuel distributor rail. A base body having a receiving space is provided for this purpose. The base body has an opening, via which a fuel fitting of the fuel injector is insertable into the receiving space of the base body. Furthermore, a first annular element is provided in the receiving space, which in the installed state on the one hand interacts with the fuel fitting inserted into the receiving space and on the other hand interacts with the base body. Furthermore, a second annular element is provided in the receiving space of the base body, the first annular element and the second annular element abutting against an outside of the fuel fitting in the installed state.
Abstract:
A connecting element for fuel injection systems is used for connecting a fuel injector to a fuel-carrying component. A connecting part is provided, which is fastened on the one side on a shoulder of the fuel-carrying component and, on the other side, on a shoulder of the fuel injector. For this purpose, the connecting part is developed at least partially as a pot spring. A fuel injection system having such a connecting element is also indicated.
Abstract:
A solenoid valve for controlling fluids includes a closing element that opens and closes at least one outlet opening on a valve seat, and a magnetic circuit that includes an armature, an internal pole, a magnetic return path, and a coil, the armature being connected to the closing element. The magnetic circuit includes a nonmagnetic separating element for interrupting the magnetic circuit and at least one magnetic crosspiece running in a direction of a longitudinal extension of the valve and situated on the nonmagnetic separating element.
Abstract:
A gas injector for directly injecting a gaseous fuel into a combustion chamber of an internal combustion engine, including a valve closure element for releasing and closing a passage opening, the valve closure element opening in the direction of a flow direction of the gas injector, a sealing seat between the valve closure element and a valve body, a flow-guiding element being situated downstream of the sealing seat in the flow direction of the gas injector and configured to form a gas jet to be injected into the combustion chamber.
Abstract:
A suspension for fuel injection systems is used for connecting a fuel injector to a fuel-carrying component. A connecting body having a receiving space is provided for this purpose. The connecting body has an opening, via which a fuel fitting of the fuel injector is insertible at least partially into the receiving space of the connecting body. Furthermore, an annular element and an elastically deformable element are provided. Fuel fitting is supported via the annular element and the elastically deformable element along an axis of the receiving space of the connecting body. A fuel injection system having such a suspension is also indicated. The suspension allows for a soft coupling of the fuel injector to the fuel-carrying component at a desired target stiffness.
Abstract:
A mounting is provided for fuel injection systems, the mounting connecting a fuel injection valve to a fuel-conducting component, and having a connecting body and a connecting piece that are connected to one another. Inside the connecting body and the connecting piece there is configured a receptacle space in which a fuel connector of the fuel injection valve is at least partly situated. An inner collar is configured on the connecting piece. In addition, an elastically deformable element is provided. The elastically deformable element is supported at least indirectly on the inner collar of the connecting piece. In addition, the fuel connector is supported at least indirectly on the elastically deformable element. In addition, a fuel injection system having such a mounting is described.
Abstract:
A gas injector for injecting a gaseous fuel, in particular directly into a combustion chamber of an internal combustion engine, including: a valve closing element for opening or closing a pass-through opening, a valve body, and a sealing seat between the valve body and the valve closing element, in the case of a maximum lift of the valve closing element a flow cross section between the valve body and the valve closing element being smaller in the flow direction upstream from the sealing seat than a flow cross section between the valve closing element and the sealing seat and being smaller than a flow cross section in the flow direction downstream from the sealing seat.
Abstract:
A decoupling element, for decoupling a fuel injection valve from a cylinder head, includes a body that, in the mounted state, surrounds a housing of the fuel injection valve. The body is fashioned to include a cylinder-side support region to be supported on the cylinder head, and a valve-side support region for supporting the fuel injection valve. When the fuel injection valve is supported at the valve-side support region, the body is loaded with pressure. Only the cylinder-side support region of the body is fashioned in the shape of a closed ring, which connects segments of the body distributed around a circumference. The decoupling element enables the reduction of the transmission of noise from the fuel injection valve to the cylinder head.
Abstract:
A mounting is provided for fuel injection systems, the mounting connecting a fuel injection valve to a fuel-conducting component, and having a connecting body and a connecting piece that are connected to one another. Inside the connecting body and the connecting piece there is configured a receptacle space in which a fuel connector of the fuel injection valve is at least partly situated. An inner collar is configured on the connecting piece. In addition, an elastically deformable element is provided. The elastically deformable element is supported at least indirectly on the inner collar of the connecting piece. In addition, the fuel connector is supported at least indirectly on the elastically deformable element. In addition, a fuel injection system having such a mounting is described.