Abstract:
Systems and methods for detecting developing faults in a flow generator or ventilator during therapeutic use thereof are provided. The motor current may be measured to estimate the torque input by the motor, while the output torque from the impeller may be determined (e.g., as inferred from the motor control system model and/or by consulting a lookup table). One or more transducers may collect data useful in determining the input and output torques. A difference between the input (to the motor) torque and the output (from the impeller) torque may be calculated. The difference, optionally filtered using a low-pass filter to reduce noise, may be compared to a predetermined threshold once or over a period of time to detect gross failures and/or developing failures. Once a failure or developing failure is detected, a user may be alerted and/or the flow generator may be placed into a “service required” mode.
Abstract:
A method of using CPAP equipment to sense cardiogenic oscillations in a patient's airflow, and to monitor and treat the patient's cardiac condition. The apparatus diagnoses cardiac morbidity conditions, such as the existence of arrhythmias or other cardiac abnormalities, and influences and optimizes cardiac stroke volume. The apparatus further monitors pulse-transit time, changes in the heart pre-ejection period, and the duration of the cardiac cycle.
Abstract:
Apparatus and methods provide compliance management tools such as for respiratory pressure therapy. In some versions, a respiratory pressure therapy system may include one or more processors, such as of a data server, configured to communicate with a computing device and/or a respiratory pressure therapy device. The respiratory pressure therapy device may be configured to deliver respiratory pressure therapy to a patient for a session. The computing device may be associated with the patient. The processor(s) may be further configured to compute a therapy quality indicator of the session from usage data relating to the session. The therapy quality indicator may be a number derived from contributions of a plurality of usage variables for the session in the usage data. The processor(s) may be further configured to present, such as by transmitting, the therapy quality indicator to the computing device. The therapy quality indicator may promote patient compliance.
Abstract:
Systems and methods for detecting developing faults in a flow generator or ventilator during therapeutic use thereof are provided. The motor current may be measured to estimate the torque input by the motor, while the output torque from the impeller may be determined (e.g., as inferred from the motor control system model and/or by consulting a lookup table). One or more transducers may collect data useful in determining the input and output torques. A difference between the input (to the motor) torque and the output (from the impeller) torque may be calculated. The difference, optionally filtered using a low-pass filter to reduce noise, may be compared to a predetermined threshold once or over a period of time to detect gross failures and/or developing failures. Once a failure or developing failure is detected, a user may be alerted and/or the flow generator may be placed into a “service required” mode.
Abstract:
Methods, systems and/or apparatus for slowing a patient's breathing by using positive pressure therapy. In certain embodiments, a current interim breathing rate target is set, and periodically the magnitude of a variable pressure waveform that is scaled to the current interim breathing rate target is increased if the patient's breathing rate is greater than the interim breathing rate target in order to lengthen the patient's breath duration. The magnitude of the pressure increase may be a function of the difference between the interim breathing rate target and the patient's breathing rate. The interim breathing rate target may be periodically reduced in response to the patient's breathing rate slowing down toward the current interim breathing rate target. The variable pressure waveform cycles from an inhalation phase to an exhalation phase when the patient airflow decreases to a cycle threshold, the cycle threshold being a function of flow versus time within a breath and generally increasing with time. Different interim breathing rate targets have different cycle threshold functions, and the cycle threshold functions allow easier cycling as the interim breathing rate targets decrease. Similarly, the variable pressure waveform triggers from an exhalation phase to an inhalation phase when the patient airflow increases to a trigger threshold, the trigger threshold being a function of flow versus time within a breath and generally decreasing with time. Different interim breathing rate targets have different trigger threshold functions, and the trigger threshold functions allow easier triggering as the interim breathing rate targets decrease.
Abstract:
A positive airway pressure (PAP) device for supplying a flow of breathable gas to a patient includes a first housing; a flow generator provided in the first housing, the flow generator configured to generate a flow of breathable gas; a second housing configured to be connected to the first housing, the second housing including a channel having an inlet configured to receive the flow of breathable gas and an outlet configured to discharge the flow of breathable gas, wherein the first housing is provided on top of the second housing such that a footprint of the PAP device is not substantially increased beyond a footprint of the second housing.