摘要:
Thin semiconductor regions and thick semiconductor regions are formed oven an insulator layer. Thick semiconductor regions include at least one semiconductor fin. A gate conductor layer is patterned to form disposable planar gate electrodes over ETSOI regions and disposable side gate electrodes on sidewalls of semiconductor fins. End portions of the semiconductor fins are vertically recessed to provide thinned fin portions adjacent to an unthinned fin center portion. After appropriate masking by dielectric layers, selective epitaxy is performed on planar source and drain regions of ETSOI field effect transistors (FETs) to form raised source and drain regions. Further, fin source and drain regions are grown on the thinned fin portions. Source and drain regions, fins, and the disposable gate electrodes are planarized. The disposable gate electrodes are replaced with metal gate electrodes. FinFETs and ETSOI FETs are provided on the same semiconductor substrate.
摘要:
A device is provided that includes memory, logic and capacitor structures on a semiconductor-on-insulator (SOI) substrate. In one embodiment, the device includes a semiconductor-on-insulator (SOI) substrate having a memory region and a logic region. Trench capacitors are present in the memory region and the logic region, wherein each of the trench capacitors is structurally identical. A first transistor is present in the memory region in electrical communication with a first electrode of at least one trench capacitor that is present in the memory region. A second transistor is present in the logic region that is physically separated from the trench capacitors by insulating material. In some embodiments, the trench capacitors that are present in the logic region include decoupling capacitors and inactive capacitors. A method for forming the aforementioned device is also provided.
摘要:
Methods of fabricating P-I-N diodes, structures for P-I-N diodes and design structure for P-I-N diodes. A method includes: forming a trench in a silicon substrate; forming a doped region in the substrate abutting the trench; growing an intrinsic epitaxial silicon layer on surfaces of the trench; depositing a doped polysilicon layer to fill remaining space in the trench, performing a chemical mechanical polish so top surfaces of the intrinsic epitaxial silicon layer and the doped polysilicon layer are coplanar; forming a dielectric isolation layer in the substrate; forming a dielectric layer on top of the isolation layer; and forming a first metal contact to the doped polysilicon layer through the dielectric layer and a second contact to the doped region the dielectric and through the isolation layer.
摘要:
A semiconductor structure. The semiconductor structure includes a semiconductor substrate, a trench in the semiconductor substrate. The trench comprises a side wall which includes {100} side wall surfaces and {110} side wall surfaces. The semiconductor structure further includes a blocking layer on the {100} side wall surfaces and the {110} side wall surfaces. The method further comprises the steps of removing portions of the blocking layer on the {110} side wall surfaces without removing portions of the blocking layer on the {100} side wall surfaces such that the {110} side wall surfaces are exposed to a surrounding ambient.
摘要:
A DRAM memory cell and process sequence for fabricating a dense (20 or 18 square) layout is fabricated with silicon-on-insulator (SOI) CMOS technology. Specifically, the present invention provides a dense, high-performance SRAM cell replacement that is compatible with existing SOI CMOS technologies. Various gain cell layouts are known in the art. The present invention improves on the state of the art by providing a dense layout that is fabricated with SOI CMOS. In general terms, the memory cell includes a first transistor provided with a gate, a source, and a drain respectively; a second transistor having a first gate, a second gate, a source, and a drain respectively; and a capacitor having a first terminal, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
摘要:
A metal gate stack containing a metal layer having a mid-band-gap work function is formed on a high-k gate dielectric layer. A threshold voltage adjustment oxide layer is formed over a portion of the high-k gate dielectric layer to provide devices having a work function near a first band gap edge, while another portion of the high-k dielectric layer remains free of the threshold voltage adjustment oxide layer. A gate stack containing a semiconductor oxide based gate dielectric and a doped polycrystalline semiconductor material may also be formed to provide a gate stack having a yet another work function located near a second band gap edge which is the opposite of the first band gap edge. A dense circuit containing transistors of p-type and n-type with the mid-band-gap work function are formed in the region containing the threshold voltage adjustment oxide layer.
摘要:
A device that includes a pattern of strained material and relaxed material on a substrate, a strained device in the strained material, and a non-strained device in the relaxed material. The strained material may be silicon (Si) in either a tensile or compressive state, and the relaxed material is Si in a normal state. A buffer layer of silicon germanium (SiGe), silicon carbon (SiC), or similar material is formed on the substrate and has a lattice constant/structure mis-match with the substrate. A relaxed layer of SiGe, SiC, or similar material is formed on the buffer layer and places the strained material in the tensile or compressive state. Carbon-doped silicon or germanium-doped silicon may be used to form the strained material. The structure includes a multi-layered substrate having strained and non-strained materials patterned thereon.
摘要:
A method is provided for making a buried plate region in a semiconductor substrate. According to such method, a trench is a single-crystal semiconductor region of a substrate is etched to form a trench elongated in a direction extending downwardly from a major surface of the substrate. A dopant source layer is formed to overlie a lower portion of the trench sidewall but not an upper portion of the trench sidewall. A layer consisting essentially of semiconductor material is epitaxially grown onto a single-crystal semiconductor region exposed at the upper portion of the trench sidewall above the dopant source layer. Through annealing, a dopant is then driven from the dopant source layer into the single-crystal semiconductor material of the substrate adjacent to the lower portion to form a buried plate. Then, the dopant source layer is removed and an isolation collar is formed along at least a part of the upper portion.
摘要:
A method of forming a conductive spacer on a semiconductor device. The method includes depositing a polysilicon layer on the semiconductor device, selectively implanting dopant ions in the polysilicon layer on a first side of a transistor region of the semiconductor device to define a conductive spacer area, and removing the polysilicon layer except for the conductive spacer area. Optionally, a silicidation process can be performed on the conductive spacer area so that the conductive spacer is made up of metal silicide.
摘要:
Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.