Abstract:
A high current density plasma generator includes a chamber that contains a feed gas. An anode is positioned in the chamber. A cathode assembly is position adjacent to the anode inside the chamber. A power supply having an output is electrically connected between the anode and the cathode assembly. The power supply generates at the output an oscillating voltage that produces a plasma from the feed gas. At least one of an amplitude, frequency, rise time, and fall time of the oscillatory voltage is chosen to increase an ionization rate of the feed gas.
Abstract:
Methods and apparatus for generating uniformly-distributed plasma are described. A plasma generator according to the invention includes a cathode assembly that is positioned adjacent to an anode and forming a gap there between. A gas source supplies a volume of feed gas and/or a volume of excited atoms to the gap between the cathode assembly and the anode. A power supply generates an electric field across the gap between the cathode assembly and the anode. The electric field ionizes the volume of feed gas and/or the volume of excited atoms that is supplied to the gap, thereby creating a plasma in the gap.
Abstract:
A plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. A pulsed power supply comprising at least two solid state switches and having an output that is electrically connected between the anode and the cathode assembly generates voltage micropulses. A pulse width and a duty cycle of the voltage micropulses are generated using a voltage waveform comprising voltage oscillation having amplitudes and frequencies that generate a strongly ionized plasma.
Abstract:
A plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. A pulsed power supply comprising at least two solid state switches and having an output that is electrically connected between the anode and the cathode assembly generates voltage micropulses. A pulse width and a duty cycle of the voltage micropulses are generated using a voltage waveform comprising voltage oscillation having amplitudes and frequencies that generate a strongly ionized plasma.
Abstract:
Methods and apparatus for generating strongly-ionized plasmas are disclosed. A strongly-ionized plasma generator according to one embodiment includes a chamber for confining a feed gas. An anode and a cathode assembly are positioned inside the chamber. A pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply generates a multi-stage voltage pulse that includes a low-power stage with a first peak voltage having a magnitude and a rise time that is sufficient to generate a weakly-ionized plasma from the feed gas. The multi-stage voltage pulse also includes a transient stage with a second peak voltage having a magnitude and a rise time that is sufficient to shift an electron energy distribution in the weakly-ionized plasma to higher energies that increase an ionization rate which results in a rapid increase in electron density and a formation of a strongly-ionized plasma.
Abstract:
Methods and apparatus for high-deposition sputtering are described. A sputtering source includes an anode and a cathode assembly that is positioned adjacent to the anode. The cathode assembly includes a sputtering target. An ionization source generates a weakly-ionized plasma proximate to the anode and the cathode assembly. A power supply produces an electric field between the anode and the cathode assembly that creates a strongly-ionized plasma from the weakly-ionized plasma. The strongly-ionized plasma includes a first plurality of ions that impact the sputtering target to generate sufficient thermal energy in the sputtering target to cause a sputtering yield of the sputtering target to be non-linearly related to a temperature of the sputtering target.
Abstract:
A strongly-ionized plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. An output of a pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply comprising solid state switches that are controlled by micropulses generated by drivers. At least one of a pulse width and a duty cycle of the micropulses is varied so that the power supply generates a multi-step voltage waveform at the output having a low-power stage including a peak voltage and a rise time that is sufficient to generate a plasma from the feed gas and a transient stage including a peak voltage and a rise time that is sufficient to generate a more strongly-ionized plasma.
Abstract:
Methods and apparatus for generating strongly-ionized plasmas are disclosed. A strongly-ionized plasma generator according to one embodiment includes a chamber for confining a feed gas. An anode and a cathode assembly are positioned inside the chamber. A pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply generates a multi-stage voltage pulse that includes a low-power stage with a first peak voltage having a magnitude and a rise time that is sufficient to generate a weakly-ionized plasma from the feed gas. The multi-stage voltage pulse also includes a transient stage with a second peak voltage having a magnitude and a rise time that is sufficient to shift an electron energy distribution in the weakly-ionized plasma to higher energies that increase an ionization rate which results in a rapid increase in electron density and a formation of a strongly-ionized plasma.
Abstract:
Magnetically enhanced sputtering methods and apparatus are described. A magnetically enhanced sputtering source according to the present invention includes an anode and a cathode assembly having a target that is positioned adjacent to the anode. An ionization source generates a weakly-ionized plasma proximate to the anode and the cathode assembly. A magnet is positioned to generate a magnetic field proximate to the weakly-ionized plasma. The magnetic field substantially traps electrons in the weakly-ionized plasma proximate to the sputtering target. A power supply produces an electric field in a gap between the anode and the cathode assembly. The electric field generates excited atoms in the weakly ionized plasma and generates secondary electrons from the sputtering target. The secondary electrons ionize the excited atoms, thereby creating a strongly-ionized plasma having ions that impact a surface of the sputtering target to generate sputtering flux.
Abstract:
Methods and apparatus for generating uniformly-distributed plasma are described. A plasma generator according to the invention includes a cathode assembly that is positioned adjacent to an anode and forming a gap there between. A gas source supplies a volume of feed gas and/or a volume of excited atoms to the gap between the cathode assembly and the anode. A power supply generates an electric field across the gap between the cathode assembly and the anode. The electric field ionizes the volume of feed gas and/or the volume of excited atoms that is supplied to the gap, thereby creating a plasma in the gap.