Abstract:
A transceiver front-end provides an interface between a transmission medium and transmitter, and between a transmission medium and receiver. The transceiver front-end includes a hybrid circuit, a high-pass filter, and a gain stage, that permits the reduction or the complete elimination of buffer amplifiers. Buffer amplifiers can be eliminated because the hybrid circuit and/or the high-pass filter are adapted so that they can be directly connected to each other, without a loss in circuit performance. Furthermore, the high-pass filter and/or the gain stage are also adapted so they can be directly connected. As such, the transceiver front-end can be constructed using all passive components, reducing or eliminating excess heat generation.
Abstract:
In a receiver for receiving a modulated carrier (MC) having asymmetrical sidebands (USB,LSB), for example, a TV signal, a synchronous demodulator (SDEM) derives a vectorial baseband signal (VB) from the modulated carrier (MC). A filter (FILT) filters the vectorial baseband signal so as to compensate for the sideband asymmetry, for example, by means of a Nyquist slope. Thus, the sideband asymmetry is compensated at baseband frequencies, rather than at an intermediate frequency, which allows a better quality of reception.
Abstract:
Encoder for the conversion of a signal of thermometric or cyclic type including a set of n Exclusive OR gates (X1, Xi, . . . , Xn) and an encoding matrix with n rows (1 . . . n) and a plurality of pairs of columns for a differential output of one bit of the binary signal, a matrix in which a row/column coupling is produced by a transistor (T). A pair of pseudo-columns of order zero is coupled to the rows in a way comparable to the coupling of the pair of columns of order 1, but by applying a cyclic shift in respect of the rank of the rows (rows of rank i of the pseudo-columns of order zero, coupled like the rows of rank (i modulo n)+1 of the columns of order 1). The bit of order zero [Bo] is obtained at the output of an additional Exclusive OR gate the inputs of which respectively receive the logic signal [Bo*] output by the pair of pseudo-columns of order zero, and the logic signal [B1] output by the pair of columns of order one.
Abstract:
Analog-to-digital converter operating in parallel having an analog signal input and a number of digital signal outputs, comprising a plurality of comparators having each two inputs and one output, one input being connected to an impedance network for supplying this one input with its own predetermined reference voltage, and the second input being connected to the analog signal input for receiving an analog input signal to be converted, so that each of the comparators processes a predetermined input signal portion. The comparator outputs are coupled to corresponding digital signal outputs, while delay elements are inserted between the comparator outputs and the corresponding digital signal outputs for causing a delay to occur related to the steepness of the slope of the input signal portion of the relevant comparator.
Abstract:
A differential amplifier with single-ended drive includes a balancing impedance (20) coupled between the base of the transistor (3) connected to the signal input (1) and the common point (9) of the two emitters of the transistors (3,4), which form a differential pair. The capacitance value of the capacitor (20) is substantially equal to the capacitance value of the stray capacitance (19) of the collector-substrate junction of a transistor (10) which forms a current source. This provides a symmetry of the capacitances between the input (1) and the common point (9) and between the common point (9) and ground via the transistor (10). This results in an improved balance in the output signals at the output terminals (5,6) and a flat frequency response of the differential amplifier for higher frequencies.
Abstract:
In a folding circuit of an analog-to-digital converter a chain of emitters of transistors which are interconnected by threshold elements and fed by direct current sources are used to reduce the distortion. The circuit is controlled by a current source which produces the input signal.
Abstract:
Attenuation arrangement comprising a step attenuator arranged in cascade with a controllable voltage divider via first and second voltage terminals, the step attenuator comprising a series arrangement of attenuation elements for dividing a voltage applied across said series arrangement into a plurality of voltage increments, which voltage increments are individually switchable between the two voltage terminals for varying the output voltage of the controllable voltage divider for the voltage range of the relevant voltage element, the direction of the polarity of the voltage between the two voltage terminals changing at a switch-over from one voltage increment to an adjacent voltage increment.
Abstract:
The invention centers around a system for interpolating between multiple pairs of complementary main signals to generate further pairs of complementary signals. An input circuit (10) supplies the main signals. The interpolation is a two-step operation. The first step is done with two strings (S and S.sub.N) of impedance elements (R.sub.0 -R.sub.N-1 and R.sub.N0 -R.sub.NN-1). Each pair of main signals is supplied to a corresponding pair of nodes along the strings. Interpolated signals are taken from other pairs of corresponding nodes along the strings. In the second interpolation stage, a delay network (D) formed with additional impedance elements (R.sub.D0 -R.sub.DN-1 and R.sub.DN0 -R.sub.DNN-1) compensates for transmission delays through the impedance elements that make up the strings.
Abstract:
An analog-to-digital current converter comprises n series-connected stages which each provide one bit of the Gray code. For this purpose each stage m derives a difference current from the input current (i.sub.i/m), which is the output current (i.sub.0/m-1) of the preceding stage, and a reference current (I/2.sup.m-1) from a source (6). This difference current flows to the output (a) of the stage m (i.sub.o/m) either via a diode (3) or via a current (11) depending on its direction. Conduction of the diode (3) or of the current-mirror circuit (11) is used for the bit indication.This results in a very fast analog-to-digital converter with few components and a high accuracy and resolution.
Abstract:
Two current circuits are between two common terminals (+V.sub.B and -V.sub.B). The ratio between the currents in the two current circuits is defined by a first current-dividing circuit, and the absolute values of these currents are defined by means of a second current-dividing circuit, in particular a resistor in this second current-dividing circuit. In order to ensure that the current-stabilizing assumes the proper state upon activation, a first current-supply circuit is coupled to the input of the second current-dividing circuit, which current-supply circuit comprises the series arrangement of a resistor and a transistor arranged as a diode, and a second current-supply circuit is coupled to the output of the current-dividing circuit, which second current-supply circuit includes a transistor whose base is connected in common with that of the transistor of the first current-supply circuit.