Abstract:
A current folding cell has current inputs and current outputs. Input currents are transferred from one current path to another and finally leading to the current outputs to establish a continuous folding characteristic. The signal current through one of the current paths often does not need to be substantially zero around the folding point in the folding characteristic. Comparator outputs in the cell provide digital outputs corresponding to the currents at the current inputs. An A/D converter can be constructed utilizing such current folding circuit cells in cascade and/or in parallel. The well-determined relationship between folder outputs can be used in a feedback loop to reduce or eliminate mismatch contributions. A mixer can be constructed using such current folding cells.
Abstract:
An auto-calibration technique for optimizing the transfer function of analog-to-digital converters. The technique can be applied to analog-to-digital converter (ADC) architectures employing a cascade of n-stages to form a composite n-bit ADC transfer function. The technique utilizes evaluation of the probability density function of individual bits to determine error sign, minimize error magnitude and assure calibration convergence.
Abstract:
The invention relates to an analog to digital converter computing all the bits in parallel or sequentially, without using decoding logic having an analog input and a digital output, wherein given the analog signal x, each bit can be computed by applying a formula containing a non linear periodic function which may be sine shaped or pulse shaped.
Abstract:
An Operational Analog to Digital (SYMAD) Convertor cell for converting an analog signal into a discrete binary code. An analog signal is processed by sample and hold circuitry and then compared to a reference voltage by a comparator. The comparator output is the converted digital output. This output is coupled back to the control input of an analog switch which selects either the reference voltage or a predetermined potential, typically zero volts, to couple to an inverting input of an operational amplifier. The analog signal input is also coupled to the non-inverting input of the operational amplifier. The operational amplifier is configured as a differential amplifier with a gain of two. If the digital output of the comparator is a logic 1, then the operational amplifier output is two times the difference between the analog signal and the reference voltage. If the digital output of the comparator is a logic 0, then the output of the operational amplifier is two times the analog signal. As many SYMAD cells as necessary may be provided to obtain a desired resolution.
Abstract:
A differential amplifier operating as a magnitude amplifier may be used in a serial-type A/D converter. The differential amplifier uses complementary differential emitter pairs for folding and aligning a differential input signal. The differential input signal has a first signal and a second signal each of which is fed to one of two input circuits. One input circuit includes a bipolar npn transistor and a current sink and the other includes a bipolar pnp transistor and a current source. The outputs of the input npn transistors feed a differential pair of output pnp transistors. The emitters of the output pnp transistors are coupled, with the signal on the emitters following the lower of the differential input signals. The outputs of the input pnp transistors feed a differential pair of output npn transistors. The emitters of the output npn transistors also are coupled, with the signal on the emitters following the inputs in a predetermined manner. The results are folded signals at the outputs of the output transistors that are aligned by offset circuits.
Abstract:
An n-bit analog processing circuit constructed with network swappers has n stages and an input port for inputting an analog signal to be processed. Each of the n stages includes first and second reference input ports, at least one swappable network having first and second terminals, and a switching element that is responsive to a digital input signal for varying a connectivity of the first and second terminals with respect to the first and second reference input ports. Each of the n networks has a primary electrical characteristic that is binarily weighted with respect to others of the networks. The primary electrical characteristic may be resistance, capacitance, capacitive reactance, inductance, inductive reactance, voltage potential, gain, transconductance, superconductance, time delay, permeability, electrical or optical conductor length, and/or winding turns. A characteristic of an analog signal appearing at an output port is a function of an analog signal applied between the first and second reference input ports of a most significant stage, and is also a function of an n-bit digital signal (binary or Gray code) that is applied to the n-stages.
Abstract:
A multi-bit per cycle successive approximation register (SAR) analog-to-digital converter (ADC) may sample an input signal, successively approximate the sampled signal with a shrinking sub-range containing the signal, and output coarse digital codes corresponding to the sub-range. A sub-ranging stage may continue quantization over the sub-range by sampling and interpolating between a pair of zero crossing signals that bound the sub-range. The zero crossing signals may be taken from the SAR preamp output. The sub-ranging process may be pipelined recursively in multiple stages to increase throughput and efficiency.
Abstract:
The invention relates to analog integrated electronic circuits using differential pairs. The proposal is for a method of automatic correction of offset voltage. The inputs (V1, V2) of the differential circuit are short circuited during a calibration phase distinct from the normal usage phase. A capacitor is charged through the difference of the output currents of the branches of the differential pair in this phase. The voltage at the terminals of the capacitor is compared with at least one threshold. During the normal usage phase following the calibration phase, the result of the comparison is kept in memory. In the normal usage phase, a correction is applied depending on the result kept in memory to a current source of a follower stage upstream of the differential pair.
Abstract:
The invention relates to analog integrated electronic circuits using differential pairs. The proposal is for a method of automatic correction of offset voltage. The inputs (V1, V2) of the differential circuit are short circuited during a calibration phase distinct from the normal usage phase. A capacitor is charged through the difference of the output currents of the branches of the differential pair in this phase. The voltage at the terminals of the capacitor is compared with at least one threshold. During the normal usage phase following the calibration phase, the result of the comparison is kept in memory. In the normal usage phase, a correction is applied depending on the result kept in memory to a current source of a follower stage upstream of the differential pair.