POWER STORAGE DEVICE AND VEHICLE
    12.
    发明申请

    公开(公告)号:US20240405308A1

    公开(公告)日:2024-12-05

    申请号:US18695496

    申请日:2022-09-20

    Abstract: A power storage device that is less likely to be influenced by an ambient temperature is provided. The power storage device capable of being charged and discharged even in a low-temperature environment is provided. A first secondary battery capable of being charged and discharged even at low temperatures and a general second secondary battery are adjacent to each other in the power storage device. The power storage device having such a structure can use, as an internal heat source in a low-temperature environment, heat generated by charge and discharge of the secondary battery capable of being charged and discharged even at low temperatures. Specifically, the power storage device includes the first secondary battery and the second secondary battery adjacent to each other, the first secondary battery has flexibility, and a value of discharge capacity in discharge at −40° C. is higher than or equal to 50% of a value of discharge capacity in discharge at 25° C.

    METHOD FOR FABRICATING SECONDARY BATTERY AND MANUFACTURING APPARATUS FOR SECONDARY BATTERY

    公开(公告)号:US20230290992A1

    公开(公告)日:2023-09-14

    申请号:US18017191

    申请日:2021-07-27

    CPC classification number: H01M10/0431 H01M10/0404 H01M10/0583

    Abstract: At least part of a fabrication process of a secondary battery is automated. A highly reliable secondary battery is provided. The secondary battery is fabricated by placing a first electrode over a first exterior body; placing a separator over the first electrode; placing a second electrode over the separator; dripping an electrolyte on at least one of the first electrode, the separator, and the second electrode; impregnating the at least one of the first electrode, the separator, and the second electrode with the electrolyte; then placing a second exterior body over the first exterior body to cover the first electrode, the separator, and the second electrode; and sealing the first electrode, the separator, and the second electrode with the first exterior body and the second exterior body. The electrolyte is dripped from a position whose shortest distance from a surface where the electrolyte is dripped is greater than 0 mm and less than or equal to 1 mm.

    METHOD FOR FORMING COMPOSITE OXIDE AND METHOD FOR FORMING LITHIUM ION BATTERY

    公开(公告)号:US20240429381A1

    公开(公告)日:2024-12-26

    申请号:US18692527

    申请日:2022-09-09

    Abstract: A method for forming a positive electrode active material that can be used for a lithium ion battery having excellent discharge characteristics even in a low-temperature environment is provided. The method includes a first step in which lithium cobalt oxide with a median diameter (D50) of less than or equal to 10 μm is heated at a temperature higher than or equal to 700° C. and lower than or equal to 1000° C. for longer than or equal to 1 hour and shorter than or equal to 5 hours, a second step in which a first mixture is formed by mixing a fluorine source and a magnesium source to the lithium cobalt oxide subjected to the first step, a third step in which the first mixture is heated at a temperature higher than or equal to 800° C. and lower than or equal to 1100° C. for longer than or equal to 1 hour and shorter than or equal to 10 hours, a fourth step in which a second mixture is formed by mixing a nickel source and an aluminum source to the first mixture subjected to the third step, and a fifth step in which the second mixture is heated at a temperature higher than or equal to 800° C. and lower than or equal to 950° C. for longer than or equal to 1 hour and shorter than or equal to 5 hours.

    LITHIUM ION BATTERY
    19.
    发明公开
    LITHIUM ION BATTERY 审中-公开

    公开(公告)号:US20240347760A1

    公开(公告)日:2024-10-17

    申请号:US18293877

    申请日:2022-07-26

    Abstract: A lithium ion battery having an excellent discharge characteristics even at temperatures below freezing is to be provided. The lithium ion battery includes a positive electrode including a positive electrode active material, an electrolyte, and a negative electrode including a negative electrode active material that is a carbon material. In the lithium ion battery, a value of discharge capacity obtained by, after performing constant current charging at a charge rate of 0.1 C (where 1 C=200 mA/g) until a voltage reaches 4.5 V and then performing constant voltage charging at 4.5 V until a current value achieves 0.01 C in an environment of 25° C., performing constant current discharging at a discharge rate of 0.1 C until a voltage reaches 2.5 V in an environment of −40° C. is higher than or equal to 50% of a value of discharge capacity obtained by, after performing constant current charging at a charge rate of 0.1 C (where 1 C=200 mA/g) until a voltage reaches 4.5 V and then performing constant voltage charging at 4.5 V until a current value achieves 0.01 C in an environment of 25° C., performing constant current discharging at a discharge rate of 0.1 C until a voltage reaches 2.5V in an environment of 25° C.

Patent Agency Ranking