Abstract:
A reflective mask cleaning apparatus according to an embodiment comprises a first supply section configured to supply a first solution containing at least one of an organic solvent and a surfactant to a ruthenium-containing capping layer provided in a reflective mask; and a second supply section configured to supply at least one of a reducing solution and an oxygen-free solution to the capping layer.A reflective mask cleaning apparatus according to an alternative embodiment comprises a third supply section configured to supply a plasma product produced from a reducing gas to a ruthenium-containing capping layer provided in a reflective mask; and a second supply section configured to supply at least one of a reducing solution and an oxygen-free solution to the capping layer.
Abstract:
According to one embodiment, a substrate treatment device includes a placement stand configured to rotate a substrate, a cooling part configured to supply a cooling gas into a space between the placement stand and the substrate, a liquid supplier configured to supply a liquid on a surface of the substrate opposite to the placement stand side, a detector configured to detect a state of the liquid on the surface of the substrate, and a controller controlling at least one of a rotation speed of the substrate, a flow rate of the cooling gas, or a supply amount of the liquid. The controller sets the liquid on the surface of the substrate to be in a supercooled state, obtains a temperature of the liquid in the supercooled state at a start of freezing, and is configured to calculate a removal ratio of a contamination.
Abstract:
A substrate processing apparatus according to an embodiment of the present disclosure includes a stage having a substantially disc-shaped form and including a hole in a center thereof; a roller that contacts a side surface of the stage and rotates the stage; a first liquid nozzle that supplies a first liquid to a first surface of the substrate; a first driver that moves a position of the first liquid nozzle; a second liquid nozzle that supplies a second liquid from the hole of the stage to a second surface of the substrate; a second driver that moves a position of the second liquid nozzle; a cooling nozzle that supplies a cooling gas from the hole of the stage to the second surface; a third driver that moves a position of the cooling nozzle; and a controller that controls the first driver, the second driver, and the third driver.
Abstract:
According to one embodiment, an imprint template manufacturing apparatus includes: a supply head that supplies a liquid-repellent material in liquid form to a template having a convex portion where a concavo-convex pattern is formed on a stage; a moving mechanism that moves the stage and the supply head relatively in a direction along the stage; a controller that controls the supply head and the moving mechanism such that the supply head applies the liquid-repellent material to at least a side surface of the convex portion so as to avoid the concavo-convex pattern; and a cleaning unit that supplies a liquid to the template coated with the liquid-repellent material. The liquid-repellent material contains a liquid-repellent component and a non-liquid-repellent component that react with the surface of the template, and a volatile solvent that dissolves the liquid-repellent component. The liquid is a fluorine-based volatile solvent that dissolves the non-liquid-repellent component.
Abstract:
According to one embodiment, an imprint template manufacturing apparatus includes: a supply head that supplies a liquid-repellent material in liquid form to a template having a convex portion where a concavo-convex pattern is formed on a stage; a moving mechanism that moves the stage and the supply head relatively in a direction along the stage; a controller that controls the supply head and the moving mechanism such that the supply head applies the liquid-repellent material to at least a side surface of the convex portion so as to avoid the concavo-convex pattern; and a cleaning unit that supplies a liquid to the template coated with the liquid-repellent material. The liquid-repellent material contains a liquid-repellent component and a non-liquid-repellent component that react with the surface of the template, and a volatile solvent that dissolves the liquid-repellent component. The liquid is a fluorine-based volatile solvent that dissolves the non-liquid-repellent component.
Abstract:
A substrate treatment device according to an embodiment includes a placement portion on which a substrate is placed and rotated, a liquid supply portion which supplies a liquid to a surface on an opposite side to the placement portion of the substrate, a cooling portion which supplies a cooling gas to a surface on a side of the placement portion of the substrate, and a control portion which controls at least one of a rotation speed of the substrate, a supply amount of the liquid, and a flow rate of the cooling gas. The control portion brings the liquid present on a surface of the substrate into a supercooled state and causes at least a part of the liquid brought into the supercooled state to freeze.
Abstract:
According to one embodiment, an imprint template manufacturing apparatus includes a stage, a supply head, a moving mechanism, and a controller. The stage supports a template that includes a base having a main surface, and a convex portion provided on the main surface and having an end surface on a side opposite to the main surface. A concavo-convex pattern to be pressed against a liquid material to be transferred is formed on the end surface. The supply head supplies a liquid-repellent material in a liquid form to the template on the stage. The moving mechanism moves the stage and the supply head relative to each other in a direction along the stage. The controller controls the supply head and the moving mechanism such that the supply head applies the liquid-repellent material to at least the side surface of the convex portion so as to avoid the concavo-convex pattern.
Abstract:
A bonding apparatus includes a substrate holder holding the second substrate; a pusher pushing a back surface of the second substrate; a substrate support unit including a support talon supporting a circumferential edge portion of the first substrate to oppose the second substrate with a prescribed spacing between the second substrate and the circumferential edge portion of the first substrate; and a controller controlling a lifting/lowering operation of the pusher. The pusher pushes one prescribed point of the back surface of the second substrate, the one prescribed point corresponding to a position where a distance between a bonding surface of the first substrate and a bonding surface of the second substrate is shorter than a distance from the circumferential edge portion of the bonding surface of the first substrate to the bonding surface of the second substrate.