Abstract:
A substrate treatment device according to an embodiment includes a placement portion on which a substrate is placed and rotated, a liquid supply portion which supplies a liquid to a surface on an opposite side to the placement portion of the substrate, a cooling portion which supplies a cooling gas to a surface on a side of the placement portion of the substrate, and a control portion which controls at least one of a rotation speed of the substrate, a supply amount of the liquid, and a flow rate of the cooling gas. The control portion brings the liquid present on a surface of the substrate into a supercooled state and causes at least a part of the liquid brought into the supercooled state to freeze.
Abstract:
A substrate treatment device according to an embodiment includes a placement portion on which a substrate is placed and rotated, a liquid supply portion which supplies a liquid to a surface on an opposite side to the placement portion of the substrate, a cooling portion which supplies a cooling gas to a surface on a side of the placement portion of the substrate, and a control portion which controls at least one of a rotation speed of the substrate, a supply amount of the liquid, and a flow rate of the cooling gas. The control portion brings the liquid present on a surface of the substrate into a supercooled state and causes at least a part of the liquid brought into the supercooled state to freeze.
Abstract:
According to one embodiment, a substrate treatment device includes a placement stand configured to rotate the substrate, a cooling part configured to supply a cooling gas into a space between the placement stand and the substrate, a first liquid supplier configured to supply a first liquid on a surface of the substrate, a second liquid supplier configured to supply a second liquid on the surface, and a controller controlling rotation of the substrate, supply of the cooling gas, the first and second liquids. The controller performs a preliminary process of supplying the second liquid on the surface, and supplying the cooling gas into the space, a liquid film forming process by supplying the first liquid toward the surface after the preliminary process, a supercooling process of the liquid film on the surface, and a freezing process of at least a part of the liquid film on the surface.
Abstract:
According to the embodiment of the present invention, a bonding apparatus comprising: a substrate holder holding the second substrate; a pusher pushing a back surface of the second substrate; a substrate support unit including a support talon supporting a circumferential edge portion of the first substrate to oppose the second substrate with a prescribed spacing between the second substrate and the circumferential edge portion of the first substrate; and a controller controlling a lifting/lowering operation of the pusher, the pusher pushing one prescribed point of the back surface of the second substrate, the one prescribed point corresponding to a position where a distance between a bonding surface of the first substrate and a bonding surface of the second substrate is shorter than a distance from the circumferential edge portion of the bonding surface of the first substrate to the bonding surface of the second substrate.
Abstract:
A substrate processing apparatus according to an embodiment of the present disclosure includes: a stage; a plurality of holders configured to hold a substrate; a liquid supply configured to supply a liquid to a surface of the substrate opposite to the stage; a cooler configured to supply a cooling gas to a space between the stage and the substrate; a mover configured to change a distance between the stage and the substrate; and a controller configured to control the cooler and the mover. The controller performs a cooling process that at least includes a supercooling process and a freezing process (solid-liquid phase), and a thawing process after the cooling process. In the cooling process, the controller controls the mover to set the distance to a first distance, and in the thawing process, the controller controls the mover to set the distance to a second distance longer than the first distance.
Abstract:
A substrate treatment device according to an embodiment includes a placement portion on which a substrate is placed and rotated, a liquid supply portion which supplies a liquid to a surface on an opposite side to the placement portion of the substrate, a cooling portion which supplies a cooling gas to a surface on a side of the placement portion of the substrate, and a control portion which controls at least one of a rotation speed of the substrate, a supply amount of the liquid, and a flow rate of the cooling gas. The control portion brings the liquid present on a surface of the substrate into a supercooled state and causes at least a part of the liquid brought into the supercooled state to freeze.
Abstract:
According to one embodiment, an imprint template manufacturing apparatus includes a stage, a supply head, a moving mechanism, and a controller. The stage supports a template that includes a base having a main surface, and a convex portion provided on the main surface and having an end surface on a side opposite to the main surface. A concavo-convex pattern to be pressed against a liquid material to be transferred is formed on the end surface. The supply head supplies a liquid-repellent material in a liquid form to the template on the stage. The moving mechanism moves the stage and the supply head relative to each other in a direction along the stage. The controller controls the supply head and the moving mechanism such that the supply head applies the liquid-repellent material to at least the side surface of the convex portion so as to avoid the concavo-convex pattern.
Abstract:
According to one embodiment, q substrate treatment device includes a placement stand, a plurality of support portions, a cooling part, a liquid supplier, and at least one protrusion. The placement stand has a plate shape, and is configured to rotate. The support portions are provided on one surface of the placement stand and configured to support a substrate. The cooling part is configured to supply a cooling gas into a space between the placement stand and a back surface of the substrate supported by the support portions. The liquid supplier is configured to supply a liquid onto a surface of the substrate. At least one protrusion is provided on the one surface of the placement stand and extends along a boundary line of a region where the substrate is provided in a plan view.
Abstract:
According to one embodiment, a substrate treatment device includes a placement stand configured to rotate a substrate, a cooling part configured to supply a cooling gas into a space between the placement stand and the substrate, a liquid supplier configured to supply a liquid on a surface of the substrate opposite to the placement stand, and a controller controlling a rotation speed of the substrate, a flow rate of the cooling gas, or a supply amount of the liquid. The controller sets the liquid on the surface of the substrate to be in a supercooled state, forms a frozen film by freezing the liquid in the super cooled state, and causes crack to generate in the frozen film by decreasing a temperature of the frozen film.
Abstract:
A reflective mask cleaning apparatus according to an embodiment comprises a first supply section configured to supply a first solution containing at least one of an organic solvent and a surfactant to a ruthenium-containing capping layer provided in a reflective mask; and a second supply section configured to supply at least one of a reducing solution and an oxygen-free solution to the capping layer. A reflective mask cleaning apparatus according to an alternative embodiment comprises a third supply section configured to supply a plasma product produced from a reducing gas to a ruthenium-containing capping layer provided in a reflective mask; and a second supply section configured to supply at least one of a reducing solution and an oxygen-free solution to the capping layer.