Abstract:
The invention relates to a process for stabilizing a bonding interface, located within a structure for applications in the fields of electronics, optics and/or optoelectronics and that comprises an oxide layer buried between an active layer and a receiver substrate, the bonding interface having been obtained by molecular adhesion. In accordance with the invention, the process further comprises irradiating this structure with a light energy flux provided by a laser, so that the flux, directed toward the structure, is absorbed by the energy conversion layer and converted to heat in this layer, and in that this heat diffuses into the structure toward the bonding interface, so as to thus stabilize the bonding interface.
Abstract:
A process is used for fabricating a final structure comprising in succession a useful semiconductor layer, a dielectric layer and a carrier substrate. The process comprises providing an intermediate structure including an upper layer, the dielectric layer and the carrier substrate, and finishing the intermediate structure to form the final structure by performing a treatment nonuniformly modifying the thickness of the dielectric layer following a predetermined dissolution profile. The dielectric layer of the intermediate structure has a thickness profile complementary to the predetermined dissolution profile.
Abstract:
A method for transferring a layer from a single-crystal substrate, called a donor substrate, onto a receiver substrate, includes supplying the single-crystal donor substrate, the substrate having a notch oriented in a first direction of the crystal and a weakness region bounding the layer to be transferred, bonding of the single-crystal donor substrate onto the receiver substrate, the main surface of the donor substrate opposite to the weakness region with respect to the layer to be transferred being at the bonding interface, and detachment of the donor substrate along the weakness region. In the method, the donor substrate has, on the main surface bonded to the receiver substrate, an array of atomic steps extending essentially in a second direction of the crystal different from the first direction.
Abstract:
A process is used for fabricating a final structure comprising in succession a useful semiconductor layer, a dielectric layer and a carrier substrate. The process comprises providing an intermediate structure including an upper layer, the dielectric layer and the carrier substrate, and finishing the intermediate structure to form the final structure by performing a treatment nonuniformly modifying the thickness of the dielectric layer following a predetermined dissolution profile. The dielectric layer of the intermediate structure has a thickness profile complementary to the predetermined dissolution profile.
Abstract:
A method for fabricating a silicon-on-insulator structure includes forming a first oxide layer on a silicon donor substrate, forming a second oxide layer on a supporting substrate, and forming a weakened zone in the donor substrate. The donor substrate is bonded to the supporting substrate by establishing direct contact between the first oxide layer on the silicon donor substrate and the second oxide layer on the supporting substrate and establishing a direct oxide-to-oxide bond therebetween. The donor substrate is split along the weakened zone to form a silicon-on-insulator structure, and the silicon-on-insulator structure is subjected to two successive rapid thermal annealing processes at temperatures T1 and T2 respectively, wherein T1 is less than or equal to T2, T1 is between 1200° C. and 1300° C., T2 is between 1240° C. and 1300° C., and when T1 is below 1240° C., then T2 is above 1240° C.
Abstract:
Embodiments of to invention relate to a process for fabricating a silicon-on-insulator structure comprising the following steps: providing a donor substrate and a support substrate, only one of the substrates being covered with an oxide layer; forming, in the donor substrate, a weak zone; plasma activating the oxide layer; bonding the donor substrate to the support substrate in a partial vacuum; implementing a bond-strengthening anneal at a temperature of 350° C. or less causing the donor substrate to cleave along the weak zone; and carrying out a heat treatment at a temperature above 900° C. A transition from the temperature of the bond-strengthening anneal to the temperature of the heat treatment may be achieved at a ramp rate above 10° C./s.