Abstract:
A micro-electro-mechanical device formed in a monolithic body of semiconductor material accommodating a first buried cavity; a sensitive region above the first buried cavity; and a second buried cavity extending in the sensitive region. A decoupling trench extends from a first face of the monolithic body as far as the first buried cavity and laterally surrounds the second buried cavity. The decoupling trench separates the sensitive region from a peripheral portion of the monolithic body.
Abstract:
A MEMS device is provided with: a supporting base, having a bottom surface in contact with an external environment; a sensor die, which is of semiconductor material and integrates a micromechanical detection structure; a sensor frame, which is arranged around the sensor die and is mechanically coupled to a top surface of the supporting base; and a cap, which is arranged above the sensor die and is mechanically coupled to a top surface of the sensor frame, a top surface of the cap being in contact with an external environment. The sensor die is mechanically decoupled from the sensor frame.
Abstract:
A microelectromechanical device includes a support structure, a microelectromechanical system die, incorporating a microstructure and a connection structure between the microelectromechanical system die and the support structure. The connection structure includes a spacer structure, joined to the support structure, and a film applied to one face of the spacer structure opposite to the support structure. The spacer structure laterally delimits at least in part a cavity and the film extends on the cavity, at a distance from the support structure. The microelectromechanical system die is joined to the film on the cavity.
Abstract:
Method for determining a first and a second calibrated value of atmospheric pressure, performed by an electronic apparatus comprising a fixed device and a first and a second movable device comprising respectively a first and a second movable barometer. The method comprises: determining whether the movable devices are being inductively charged by the fixed device; if so, acquiring respective measured values of atmospheric pressure through the movable barometers, and a reference value of atmospheric pressure in a common reference point of the electronic apparatus, the movable barometers being at respective predefined height differences with respect to the common reference point; calculating respective pressure differences as a function of the measured values of atmospheric pressure and of the reference value of atmospheric pressure; and when the movable devices are not being charged, acquiring new measured values of atmospheric pressure through the movable barometers, and determining the respective calibrated values of atmospheric pressure as a function of the new measured values of atmospheric pressure and of the pressure differences.
Abstract:
MEMS device formed in a semiconductor body which is monolithic and has a first and a second main surface. A buried cavity extends into the semiconductor body below and at a distance from the first main surface. A diaphragm extends between the buried cavity and the first main surface of the semiconductor body and has a buried face facing the buried cavity. A diaphragm insulating layer extends on the buried face of the diaphragm and a lateral insulating region extends into the semiconductor body along a closed line, between the first main surface and the diaphragm insulating layer, above the buried cavity. The lateral insulating region laterally delimits the diaphragm and forms, with the diaphragm insulating layer, a diaphragm insulating region which delimits the diaphragm and electrically insulates it from the rest of the wafer.
Abstract:
A MEMS device formed by a substrate, having a surface; a MEMS structure arranged on the surface; a first coating region having a first Young's modulus, surrounding the MEMS structure at the top and at the sides and in contact with the surface of the substrate; and a second coating region having a second Young's modulus, surrounding the first coating region at the top and at the sides and in contact with the surface of the substrate. The first Young's modulus is higher than the second Young's modulus.
Abstract:
Radiation sensor including a detection assembly and a chopper assembly, which are mechanically coupled to delimit a main cavity; and wherein the chopper assembly includes: a suspended movable structure, which extends in the main cavity; and an actuation structure, which is electrically controllable to cause a change of position of the suspended movable structure. The detection unit includes a detection structure, which faces the main cavity and includes a number of detection devices. The suspended movable structure includes a first shield of conductive material, which shields the detection devices from the radiation, the shielding of the detection devices being a function of the position of the suspended movable structure.
Abstract:
A MEMS pressure sensor includes a monolithic body of semiconductor material having a first face and a second face and housing a first buried cavity and a second buried cavity, arranged under the first buried cavity and projecting laterally therefrom. A first sensitive region is formed between the first buried cavity and the first face at a first depth, and a second sensitive region is formed between the second buried cavity and the first face at a second depth greater than the first depth. The monolithic body also houses a first piezoresistive sensing element and a second piezoresistive sensing element, integrated in the first and second sensitive regions, respectively.
Abstract:
A micro-electro-mechanical device, comprising a monolithic body of semiconductor material accommodating a first buried cavity; a sensitive region facing the first buried cavity; a second cavity facing the first buried cavity; a decoupling trench extending from the monolithic body and separating the sensitive region from a peripheral portion of the monolithic body; a cap die, forming an ASIC, bonded to and facing the first face of the monolithic body; and a first gap between the cap die and the monolithic body. The device also comprises at least one spacer element between the monolithic body and the cap die; at least one stopper element between the monolithic body and the cap die; and a second gap between the stopper element and one between the monolithic body and the cap die. The second gap is smaller than the first gap.
Abstract:
A process for manufacturing a MEMS pressure sensor having a micromechanical structure envisages: providing a wafer having a substrate of semiconductor material and a top surface; forming a buried cavity entirely contained within the substrate and separated from the top surface by a membrane suspended above the buried cavity; forming a fluidic-communication access for fluidic communication of the membrane with an external environment, set at a pressure the value of which has to be determined; forming, suspended above the membrane, a plate made of polysilicon, separated from the membrane by an empty space; and forming electrical-contact elements for electrical connection of the membrane and of the plate, which are designed to form the plates of a sensing capacitor, the value of capacitance of which is indicative of the value of pressure to be detected. A corresponding MEMS pressure sensor having the micromechanical structure is moreover described.