Abstract:
A lead frame having a plurality of concentric lead frame rings configured to receive and support a variety of integrated circuit die having a variety of sizes. The rings are separated from each other by gaps and coupled together by a plurality of tie bars. The concentric rings may be circular or rectangular. The tie bars may extend diagonally from the rings or perpendicularly to the rings.
Abstract:
A proximity sensor having a relatively small footprint includes a substrate, a semiconductor die, a light emitting device, and a cap. The light emitting device overlies the semiconductor die. The semiconductor die is secured to the substrate and includes a sensor area capable of detecting light from by the light emitting device. The cap also is secured to the substrate and includes a light barrier that prevents some of the light emitted by the light emitting device from reaching the sensor area. In one embodiment, the light emitting device and the semiconductor die are positioned on the same side of the substrate, wherein the light emitting device is positioned on the semiconductor die. In another embodiment, the light emitting device is positioned on one side of the substrate and the semiconductor die is positioned on an opposing side of the substrate.
Abstract:
An image sensor device may include an interconnect layer, an image sensor IC carried by the interconnect layer and having an image sensing surface, and encapsulation material laterally surrounding the image sensor IC and covering an upper surface of the image sensor IC up to the image sensing surface. The image sensor device may include an optical plate having a peripheral lower surface carried by an upper surface of the encapsulation material and aligned with the image sensing surface, the optical plate being spaced above the image sensing surface to define an internal cavity, and a lens assembly coupled to the encapsulation material and aligned with the image sensing surface.
Abstract:
A method for forming a molded proximity sensor with an optical resin lens and the structure formed thereby. A light sensor chip is placed on a substrate, such as a printed circuit board, and a diode, such as a laser diode, is positioned on top of the light sensor chip and electrically connected to a bonding pad on the light sensor chip. Transparent, optical resin in liquid form is applied as a drop over the light sensor array on the light sensor chip as well as over the light-emitting diode. After the optical resin is cured, a molding compound is applied to an entire assembly, after which the assembly is polished to expose the lenses and have a top surface flush with the top surface of the molding compound.
Abstract:
A method for forming a molded proximity sensor with an optical resin lens and the structure formed thereby. A light sensor chip is placed on a substrate, such as a printed circuit board, and a diode, such as a laser diode, is positioned on top of the light sensor chip and electrically connected to a bonding pad on the light sensor chip. Transparent, optical resin in liquid form is applied as a drop over the light sensor array on the light sensor chip as well as over the light-emitting diode. After the optical resin is cured, a molding compound is applied to an entire assembly, after which the assembly is polished to expose the lenses and have a top surface flush with the top surface of the molding compound.
Abstract:
A method for forming a molded proximity sensor with an optical resin lens and the structure formed thereby. A light sensor chip is placed on a substrate, such as a printed circuit board, and a diode, such as a laser diode, is positioned on top of the light sensor chip and electrically connected to a bonding pad on the light sensor chip. Transparent, optical resin in liquid form is applied as a drop over the light sensor array on the light sensor chip as well as over the light-emitting diode. After the optical resin is cured, a molding compound is applied to an entire assembly, after which the assembly is polished to expose the lenses and have a top surface flush with the top surface of the molding compound.
Abstract:
A method for forming a molded proximity sensor with an optical resin lens and the structure formed thereby. A light sensor chip is placed on a substrate, such as a printed circuit board, and a diode, such as a laser diode, is positioned on top of the light sensor chip and electrically connected to a bonding pad on the light sensor chip. Transparent, optical resin in liquid form is applied as a drop over the light sensor array on the light sensor chip as well as over the light-emitting diode. After the optical resin is cured, a molding compound is applied to an entire assembly, after which the assembly is polished to expose the lenses and have a top surface flush with the top surface of the molding compound.
Abstract:
A sensor package is provided having a light sensitive component and a light emitting component attached to a same substrate. Light from the light emitting component is emitted from the package through a first opening and reflected back into the package to the light sensitive component through a second opening in the package. A glass attachment is placed between the light emitting component and the light sensitive component. A portion of the glass is removed and filled with an opaque substance to prevent light travelling between the light emitting component and the light sensitive component in the package.
Abstract:
A sensor package is provided having a light sensitive component and a light emitting component attached to a same substrate. Light from the light emitting component is emitted from the package through a first opening and reflected back into the package to the light sensitive component through a second opening in the package. A glass attachment is placed between the light emitting component and the light sensitive component. A portion of the glass is removed and filled with an opaque substance to prevent light travelling between the light emitting component and the light sensitive component in the package.
Abstract:
A method for forming a molded proximity sensor with an optical resin lens and the structure formed thereby. A light sensor chip is placed on a substrate, such as a printed circuit board, and a diode, such as a laser diode, is positioned on top of the light sensor chip and electrically connected to a bonding pad on the light sensor chip. Transparent, optical resin in liquid form is applied as a drop over the light sensor array on the light sensor chip as well as over the light-emitting diode. After the optical resin is cured, a molding compound is applied to an entire assembly, after which the assembly is polished to expose the lenses and have a top surface flush with the top surface of the molding compound.