Abstract:
An integrated memory location structure includes an isolated semiconductor layer between the source region and the drain region of a transistor, and between the channel region and the control gate of the transistor. The isolated semiconductor layer includes two potential well zones separated by a potential barrier zone under the control gate of the transistor. A write circuit biases the memory location structure to confine charge carriers selectively in one of the two potential well zones. A read circuit biases the memory location structure to measure the drain current of the transistor and determine therefrom the stored logic state imposed by the position of the charges in one of the potential well zones.
Abstract:
The vertical transistor includes, on a semiconductor substrate, a vertical pillar 5 having one of the source and drain regions at the top, the other of the source and drain regions being situated in the substrate at the periphery of the pillar, a gate dielectric layer 7 situated on the flanks of the pillar and on the top surface of the substrate, and a semiconductor gate resting on the gate dielectric layer. The gate includes a semiconductor block having a first region 800 resting on the gate dielectric layer 7 and a second region 90 facing at least portions of the source and drain regions and separated from those source and drain region portions by dielectric cavities 14S, 14D.
Abstract:
An electronic device, such as an opto-electronic device and an integrated semiconductor memory device, includes at least one integrated memory point structure including a quantum well semiconductor area buried in the substrate of the structure and disposed under the insulated gate of a transistor. A biasing voltage source is adapted to bias the structure to enable charging or discharging of charges in the quantum well or outside the quantum well.
Abstract:
A method for making a MOS transistor includes forming a first gate within a silicon-on-insulator substrate, forming a semiconductor channel region transversely surmounting the first gate, and forming semiconductor drain and source regions on each side of the channel region. The semiconductor channel region and drain and source regions may be produced by epitaxy on an upper surface of the first gate. The channel region may be isolated from the upper surface of the first gate by forming a tunnel under the channel region and at least partially filling the tunnel with a first dielectric. The second gate is formed on the channel region and transverse to the channel region. The second gate may be separated from an upper surface of the channel region by a second dielectric.
Abstract:
A non-volatile memory includes a floating gate extending in a substrate between source and drain regions. A channel region may be confined by two insulating layers. The invention is particularly applicable to EPROM, EEPROM, Flash and single-electron memories using CMOS technology.