Abstract:
A non-volatile memory includes a floating gate extending in a substrate between source and drain regions. A channel region may be confined by two insulating layers. The invention is particularly applicable to EPROM, EEPROM, Flash and single-electron memories using CMOS technology.
Abstract:
A semiconductor device is provided that includes a semiconductor channel region extending above a semiconductor substrate in a longitudinal direction between a semiconductor source region and a semiconductor drain region, and a gate region extending in the transverse direction, coating the channel region, and insulated from the channel region. The source, channel, and drain regions are formed in a continuous semiconductor layer that is approximately plane and parallel to the upper surface of the substrate. Additionally, the source, drain, and gate regions are coated in an insulating coating so as to provide electrical insulation between the gate region and the source and drain regions, and between the substrate and the source, drain, gate, and channel regions. Also provided is an integrated circuit that includes such a semiconductor device, and a method for manufacturing such a semiconductor device.
Abstract:
The source, drain and channel regions are produced in a silicon layer completely isolated vertically from a carrier substrate by an insulating layer, and are bounded laterally by a lateral isolation region of the shallow trench type.
Abstract:
The process for fabricating a network of nanometric lines made of single-crystal silicon on an isolating substrate includes the production of a substrate comprising a silicon body having a lateral isolation defining a central part in the body. A recess is formed in the central part having a bottom wall made of dielectric material, a first pair of opposed parallel sidewalls made of dielectric material, and a second pair of opposed parallel sidewalls. At least one of the opposed parallel sidewalls of the second pair being formed from single-crystal silicon. The method further includes the epitaxial growth in the recess, from the sidewall made of single-crystal silicon of the recess, of an alternating network of parallel lines made of single-crystal SiGe alloy and of single-crystal silicon. Also, the lines made of single-crystal SiGe alloy are etched to form in the recess a network of parallel lines made of single-crystal silicon insulated from each other.
Abstract:
A method is provided for fabricating integrated electronic components. According to the method, an initial structure is produced on the surface of a first substrate. This initial structure incorporates a defined pattern formed from volumes of differentiated materials. At least part of the initial substrate that includes the defined pattern is transferred onto a second substrate, preferably by inverting the first substrate against the second substrate and then removing the first substrate. An additional structure is then produced on the second substrate. This additional structure includes volumes of material placed in correspondence with some of the volumes of differentiated material of the defined pattern. The electronic components thus produced may have a suitable configuration in accordance with technological or geometrical constraints. In a preferred method, a selective treatment is applied to the transferred part of the initial structure, so as to make a distinction between the volumes of differentiated material of the pattern.
Abstract:
The vertical insulated gate transistor includes, on a semiconductor substrate, a vertical pillar incorporating one of the source and drain regions at the top, a gate dielectric layer situated on the flanks of the pillar and on the top surface of the substrate, and a semiconductor gate resting on the gate dielectric layer. The other of the source and drain regions is in the bottom part of the pillar PIL and the insulated gate includes an isolated external portion 15 resting on the flanks of the pillar and an isolated internal portion 14 situated inside the pillar between the source and drain regions. The isolated internal portion is separated laterally from the isolated external portion by two connecting semiconductor regions PL1, PL2 extending between the source and drain regions, and forming two very fine pillars.
Abstract:
A process for making a DRAM-type cell includes growing layers of silicon germanium and layers of silicon, by epitaxy from a silicon substrate; superposing a first layer of Nnull doped silicon and a second layer of P doped silicon; and forming a transistor on the silicon substrate. The method also includes etching a trench in the extension of the transistor to provide an access to the silicon germanium layers relative to the silicon layers over a pre-set depth to form lateral cavities, and forming a capacitor in the trench and in the lateral cavities.
Abstract:
A MOS transistor formed in a silicon substrate comprising an active area surrounded with an insulating wall, a first conductive strip covering a central strip of the active area, one or several second conductive strips placed in the active area right above the first strip, and conductive regions placed in two recesses of the insulating wall and placed against the ends of the first and second strips, the silicon surfaces opposite to the conductive strips and regions being covered with an insulator forming a gate oxide.
Abstract:
An integrated memory circuit includes at least one memory cell formed by a single transistor whose gate (GR) has a lower face insulated from a channel region by an insulation layer containing a succession of potential wells, which are substantially arranged at a distance from the gate and from the channel region in a plane substantially parallel to the lower face of the gate. The potential wells are capable of containing an electric charge which is confined in the plane and can be controlled to move in the plane towards a first confinement region next to the source region or towards a second confinement region next to the drain region so as to define two memory states for the cell.
Abstract:
Processes are provided for fabricating a substrate having a silicon-on-insulator (SOI) or silicon-on-nothing (SON) architecture, which are applicable to the manufacture of semiconductor devices, especially transistors such as those of the MOS, CMOS, BICMOS, and HCMOS types. In the fabrication processes, a multilayer stack is grown on a substrate by non-selective full-wafer epitaxy. The multilayer stack includes a silicon layer on a Ge or SiGe layer. Active regions are defined and masked, and insulating pads are formed so as to be located around the perimeter of each of the active regions at predetermined intervals and placed against the sidewalls of the active regions. The insulating trenches are etched, and the SiGe or Ge layer is laterally etched so as to form an empty tunnel under the silicon layer. The trenches are filled with a dielectric. In the case of an SOI archiutecture, the tunnel is filled with a dielectric.