Abstract:
A structure comprising at least one DTI-type insulating trench in a substrate, the trench being at the periphery of at least one active area of the substrate forming a pixel, the insulating trench including a cavity filled with a dielectric material, the internal walls of the cavity being covered with a layer made of a boron-doped material.
Abstract:
An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.
Abstract:
An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.
Abstract:
A global shutter image sensor of a back-illuminated type includes a semiconductor substrate and pixels. Each pixel includes a photosensitive area, a storage area, a readout area and areas for transferring charges between these different areas. The image sensor includes, for each pixel, a protector extending at least partly into the substrate from the back of the substrate to ensure that the storage area is protected against back illumination.
Abstract:
A structure comprising at least one DTI-type insulating trench in a substrate, the trench being at the periphery of at least one active area of the substrate forming a pixel, the insulating trench including a cavity filled with a dielectric material, the internal walls of the cavity being covered with a layer made of a boron-doped material.
Abstract:
A method for manufacturing an image sensor, including the steps of: forming elementary structures of an image sensor on the first surface of a semiconductor substrate; installing a handle on the first surface; defining trenches in the handle, the trenches forming a pattern in the handle; and installing, on a hollow curved substrate, the obtained device on the free surface side of the handle, the pattern being selected according to the shape of the support surface.
Abstract:
An image sensor arranged inside and on top of a semi-conductor substrate having a front surface and a rear surface, the sensor including a plurality of pixels, each including: a photosensitive area, a reading area, and a storage area extending between the photosensitive area and the reading area; a vertical insulated electrode including an opening of transfer between the photosensitive area and the storage area; and at least one insulation element among the following: a) a layer of an insulating material extending under the surface of the photosensitive area and of the storage area and having its front surface in contact with the rear surface of the electrode; and b) an insulating wall extending vertically in the opening, or under the opening.
Abstract:
A back-side illuminated pixel including a semiconductor substrate of a first conductivity type coated, on the front side of the pixel, with a three-layer assembly successively including a first layer of the second conductivity type, an insulating layer, and a second semiconductor layer. The three-layer assembly is interrupted in a central portion of the pixel by a transfer region of the first conductivity type laterally delimited by an insulated conductive wall extending from the front surface, Transistors are formed in the second semiconductor layer.
Abstract:
A structure of insulation between photodiodes formed in a doped semiconductor layer of a first conductivity type extending on a doped semiconductor substrate of the second conductivity type, the insulating structure including a trench crossing the semiconductor layer, the trench walls being coated with an insulating layer, the trench being filled with a conductive material and being surrounded with a P-doped area, more heavily doped than the semiconductor layer.
Abstract:
A method of manufacturing an insulating trench including the successive steps of: a) forming, on a semiconductor substrate, a first masking structure including a layer of a first selectively-etchable material and etching a trench into the substrate; b) forming an insulating coating on the trench walls and filling the trench with doped polysilicon; c) forming a silicon oxide plug penetrating into the trench substantially all the way to the upper surface of the substrate and protruding above the upper surface of the substrate; and d) removing the layer of the first material.