Abstract:
A reference voltage generator circuit includes a circuit that generates a complementary to absolute temperature (CTAT) voltage and a proportional to absolute temperature (PTAT) current. An output current circuit generates, from the PTAT current, a sink PTAT current sunk from a first node and a source PTAT current sourced to a second node, wherein the sink and source PTAT currents are equal. A resistor is directly connected between the first node and the second node. A divider circuit divides the CTAT voltage to generate a divided CTAT voltage applied to the first node. A voltage at the second node is a fractional bandgap reference voltage equal to a sum of the divided CTAT voltage and a voltage drop across the resistor that is proportional to a resistor current equal to the sink and source PTAT currents.
Abstract:
A phase-locked-loop includes a phase-frequency-detector (PFD) comparing phases of an input signal and feedback signal, and generating therefrom control signals. An attenuation circuit in series with the PFD includes a filter between a voltage-controlled-oscillator (VCO) control node and ground. A buffer is coupled to the VCO control node. An impedance network is coupled to the VCO control node and has an impedance element coupled to a first current source so voltage at the VCO control node increases when control signals indicate the phase of the input signal leads the feedback signal, and coupled to a second current source so voltage at the VCO control node decreases when control signals indicate a lagging phase. A VCO is coupled to the VCO control node to generate an output signal, with the phase of the output signal matching the input signal. The feedback signal is based upon the output signal.
Abstract:
A phase locked loop (PLL) circuit includes a phase comparison circuit configured to compare phase of an input signal to phase of a feedback signal and generate a control signal responsive to the phase comparison and an oscillator circuit configured to generate an output signal at a frequency set by said control signal, where said feedback signal is derived from said output signal. The PLL circuit further operates in a calibration mode of operation wherein the oscillator circuit operates in a frequency locked loop mode to compare frequency of the input signal to frequency of the output signal and center a gain of the oscillator circuit across process, voltage and temperature in response to the frequency comparison. Furthermore, bias current for a charge pump within the phase comparison circuit is calibrated during calibration mode of operation to match a temperature independent reference current.
Abstract:
A phase locked loop includes a voltage controlled oscillator and a frequency divider or frequency multiplier. The voltage controlled oscillator and the frequency divider/multiplier are coupled together in a stacked configuration. A drive current is supplied to the voltage controlled oscillator. The drive current passes from the voltage controlled oscillator to the frequency divider/multiplier, thereby driving the frequency divider/multiplier with the same drive current that was supplied to the voltage controlled oscillator.
Abstract:
A reference voltage generator circuit includes a circuit that generates a complementary to absolute temperature (CTAT) voltage and a proportional to absolute temperature (PTAT) current. An output current circuit generates, from the PTAT current, a sink PTAT current sunk from a first node and a source PTAT current sourced to a second node, wherein the sink and source PTAT currents are equal. A resistor is directly connected between the first node and the second node. A divider circuit divides the CTAT voltage to generate a divided CTAT voltage applied to the first node. A voltage at the second node is a fractional bandgap reference voltage equal to a sum of the divided CTAT voltage and a voltage drop across the resistor that is proportional to a resistor current equal to the sink and source PTAT currents.
Abstract:
An embodiment circuit includes a first charge pump configured to generate a first current at a first node, and a second charge pump configured to generate a second current at a second node. The circuit further includes an isolation buffer coupled between the first node and the second node and an adder having a first input coupled to the second node. The circuit additionally includes an auxiliary charge pump configured to generate a third current at a second input of the adder, and an oscillator having an input coupled to an output of the adder.
Abstract:
A current mirror circuit provides a current to drive a load. A noise cancelling circuit is provided to keep the load current constant in spite of variations in the supply voltage. The noise cancelling circuit includes an auxiliary current path which branches from the load current path. The length-to-width ratios of transistors of the circuit are selected to provide the desired noise cancellation while maintaining device stability.
Abstract:
Disclosed herein is a circuit including a phase frequency detector (PFD) configured to compare phases of an input signal and a feedback signal, and to generate first and second control signals as a function of that comparison. An attenuation circuit includes a capacitor coupled in series between a node and a switching node, and is configured to charge the capacitor and disconnect the switching node from ground based on assertion of the first control signal, and discharge the capacitor and connect the switching node to ground based on assertion of the second control signal.
Abstract:
Disclosed herein is a circuit including a phase frequency detector (PFD) configured to compare phases of an input signal and a feedback signal, and to generate first and second control signals as a function of that comparison. An attenuation circuit includes a capacitor coupled in series between a node and a switching node, and is configured to charge the capacitor and disconnect the switching node from ground based on assertion of the first control signal, and discharge the capacitor and connect the switching node to ground based on assertion of the second control signal.
Abstract:
According to an embodiment, a circuit includes a first charge pump configured to generate a first current at a first node, a second charge pump configured to generate a second current at a second node, a loop filter coupled between the first and second nodes, the loop filter including a first filter path coupled to the first node, a second filter path coupled to the second node, and an isolation buffer interposed between the first and second filter paths. The second current at the second node is different than the first current at the first node. The circuit further includes an oscillator configured to apply a first gain to an output of the first filter path and a second gain to an output of the second filter path.