Abstract:
A method of forming a metal pattern is disclosed. In the method, a metal layer is formed on a base substrate. A photoresist composition is coated on the metal layer to form a coating layer. The photoresist composition includes a binder resin, a photo-sensitizer, a mercaptopropionic acid compound and a solvent. The coating layer is exposed to a light. The coating layer is partially removed to form a photoresist pattern. The metal layer is patterned by using the photoresist pattern as a mask.
Abstract:
A mask for photolithography includes: a transparent substrate; a phase shift pattern on the transparent substrate and configured to change a phase of light; a dielectric layer on the transparent substrate; and a negative refractive-index meta material layer on the dielectric layer.
Abstract:
A display device includes a reflective polarizer plate including a first substrate defining an opening area and a non-opening area, and a wire grid polarizer which is disposed on a surface of the first substrate and includes a polarizing part including a plurality of nano wire patterns which is arranged in the opening area to be spaced apart from each other, and a reflecting part including a metal film provided in the non-opening area.
Abstract:
A mask for photolithography includes: a transparent substrate; a phase shift pattern on the transparent substrate and configured to change a phase of light; a dielectric layer on the transparent substrate; and a negative refractive-index meta material layer on the dielectric layer.
Abstract:
A pattern mask for patterning a thin film includes a transparent or translucent substrate with a plurality of grooves formed thereon having a pitch of about 4.6 μm to about 10.8 μm.
Abstract:
A method for forming a fine pattern includes forming an etching target material layer on a substrate, forming a first photoresist layer on the etching target material layer, forming a metal pattern on the first photoresist layer, the metal pattern having a plurality of lines and thin film lines alternately arranged, the lines having predetermined linewidth and thickness and are spaced apart from each other by a predetermined distance, exciting surface plasmons in the metal pattern by light irradiation to produce a surface plasmon resonance that exposes a fine first pattern shape in the first photoresist layer, forming a first photoresist pattern by removing the metal pattern and developing the first photoresist layer, and etching the etching target material layer by using the first photoresist pattern as a mask.
Abstract:
A display apparatus includes a substrate, a first pixel electrode over the substrate, wherein a first distance between a first portion of the first pixel electrode and the substrate is different from a second distance between a second portion of the first pixel electrode and the substrate, and a pixel-defining layer covering a portion of the first pixel electrode and having a first opening exposing a central portion of the first pixel electrode, wherein a first taper angle of an inner surface of the first opening at a first defined portion covering the first portion is different from a second taper angle of an inner surface of the first opening at a second defined portion covering the second portion.
Abstract:
A mask for photolithography includes: a transparent substrate; a phase shift pattern on the transparent substrate and configured to change a phase of light; a dielectric layer on the transparent substrate; and a negative refractive-index meta material layer on the dielectric layer.
Abstract:
A mask for photolithography includes: a transparent substrate; a phase shift pattern on the transparent substrate and configured to change a phase of light; a dielectric layer on the transparent substrate; and a negative refractive-index meta material layer on the dielectric layer.
Abstract:
A method of forming a pattern includes: preparing a target substrate including a photoresist layer on a base substrate; aligning a phase shift mask to the target substrate, the phase shift mask including a mask substrate comparted into a first region including a first sub region and second sub regions at sides of the first sub region, and second regions at sides of the first region, the phase shift mask including a phase shift layer on the mask substrate corresponding to the first region; fully exposing the photoresist layer at the first sub region and the second regions by utilizing the phase shift mask; and removing the photoresist layer at the first sub region and the second regions to form first and second photoresist patterns corresponding to the second sub regions. Transmittance of the phase shift layer is selected to fully expose the photoresist layer in the first sub region.