Abstract:
A display device and method of fabricating the same are disclosed. In one aspect, the display device includes a substrate, a black matrix formed over the substrate, and a transparent electrode formed over the substrate. The black matrix and the transparent electrode have first and second areas, respectively. The sum of the first and second areas is substantially equal to the surface area of the substrate.
Abstract:
A mask for etching a target layer includes a mask substrate. A phase inversion layer is disposed to correspond to a non-etched area of a pattern target layer. The phase inversion layer is configured to generate inverted light by inverting a phase of incident light and to transmit the inverted light to the non-etched area of a pattern target layer. An inversion offset part is disposed in a center part of the phase inversion layer. The inversion offset part is configured to generate offset light causing destructive interference with the inverted light in the non-etched area and to provide the offset light to the non-etched area.
Abstract:
A display apparatus is disclosed that includes a substrate, a partition wall, and wiring. The substrate includes a display area and a peripheral area. The partition wall is arranged in the peripheral area. The wiring is arranged over the substrate extends from the display area to the peripheral area, and inserted into the partition wall or passes through the partition wall. The wiring includes at least one through hole.
Abstract:
A display apparatus is disclosed that includes a substrate, a partition wall, and wiring. The substrate includes a display area and a peripheral area. The partition wall is arranged in the peripheral area. The wiring is arranged over the substrate extends from the display area to the peripheral area, and inserted into the partition wall or passes through the partition wall. The wiring includes at least one through hole.
Abstract:
A display device includes: a substrate on which a plurality of sub-pixels are arranged; a light-emitting device including a light-emitting layer in each of the plurality of sub-pixels; a thin film encapsulation layer covering the light-emitting layer in each of the plurality of sub-pixels; a black matrix around the plurality of sub-pixels; and an optical sensor on the substrate, the optical sensor including a sensing portion for sensing light emitted from a light source, wherein the black matrix has a plurality of openings, through which light emitted from the light source passes, in a path through which the light is received by the sensing portion via an input object which is in contact with the substrate.
Abstract:
Provided is a cleaning composition, including, from about 0.01 weight % to about 10.0 weight % of a chelating agent, from about 0.01 weight to about 3.0 weight % of an organic acid containing a carboxyl group, from about 0.01 weight % to about 2.0 weight % of an inorganic acid, from about 1.0 weight % to about 15.0 weight % of an amine and water in an amount sufficient to bring the total weight of the cleaning composition to 100 weight %.
Abstract:
A display panel includes a gate electrode and a gate line on a substrate, a gate insulating layer and an active layer sequentially on the gate electrode and the gate line, a planarization layer which is on the substrate and compensates for a step difference between the substrate, and the gate electrode and the gate line, respectively, source and drain electrodes on the active layer overlapping the gate electrode and spaced apart from each other, a data line on the active layer and crossing the gate line, a protective layer which covers the planarization layer, the source and drain electrodes, and the data line, a contact hole defined in the planarization layer and partially exposing the drain electrode, and a pixel electrode on the protective layer and electrically connected to the drain electrode through the contact hole.
Abstract:
A method of forming a pattern includes: preparing a target substrate including a photoresist layer on a base substrate; aligning a phase shift mask to the target substrate, the phase shift mask including a mask substrate comparted into a first region including a first sub region and second sub regions at sides of the first sub region, and second regions at sides of the first region, the phase shift mask including a phase shift layer on the mask substrate corresponding to the first region; fully exposing the photoresist layer at the first sub region and the second regions by utilizing the phase shift mask; and removing the photoresist layer at the first sub region and the second regions to form first and second photoresist patterns corresponding to the second sub regions. Transmittance of the phase shift layer is selected to fully expose the photoresist layer in the first sub region.
Abstract:
A display apparatus includes a first substrate to be exposed to external light; a second substrate opposing the first substrate; a gate line arranged over the first substrate such that the gate line is located between the first and second substrates; and an anti-reflective layer. The anti-reflective layer is arranged between the first substrate and the gate line. The anti-reflective layer includes an organic layer and an inorganic layer, and the organic layer includes a light absorber configured to absorb light. The inorganic layer overlaps with the organic layer and has a refractive index smaller than that of the gate line.
Abstract:
A photoresist composition including a binder resin including a novolac resin represented by Chemical Formula 1, a diazide photosensitive initiator, and a solvent including a base solvent and an auxiliary solvent, wherein the base solvent includes propylene glycol monomethyl ether acetate, and the auxiliary solvent includes dimethyl-2-methylglutarate and ethyl beta-ethoxypropionate, wherein in Chemical Formula 1, R1 to R9 are each independently a hydrogen atom or an alkyl group, “a” is an integer number from 0 through 10, “b” is an integer number from 0 through 100, and “c” is an integer number from 1 through 10.