Abstract:
A display device and a method of manufacturing the display device are disclosed. In one aspect, the method includes forming a sacrificial layer over a carrier substrate, forming a passivation barrier layer to cover upper and lateral sides of the sacrificial layer and forming a thin film transistor layer over the passivation barrier layer. The method also includes placing a mask over the thin film transistor layer so as to expose an edge portion of the passivation barrier layer, wherein the edge portion does not overlap the mask in the depth dimension of the display device. The method further includes removing the edge portion of the passivation barrier layer so as to form a barrier layer and separating the carrier substrate from the barrier layer via the sacrificial layer.
Abstract:
A switching element includes an active pattern including a channel portion, a source portion connected to the channel portion, and a drain portion connected to the channel portion, the source portion, a gate electrode overlapping the channel portion of the active pattern, a gate insulation layer disposed between the channel portion of the active pattern and the gate electrode, a source electrode disposed on the source portion of the active pattern to make ohmic contact with the source portion, and a drain electrode disposed on the drain portion of the active pattern to make ohmic contact with the drain portion. The drain portion and the channel portion of the active pattern include the same or substantially the same material.
Abstract:
A window is provided to include a glass substrate, an adhesive layer on the glass substrate, a polymer layer between the glass substrate and the adhesive layer, the polymer layer having a surface adjacent to the adhesive layer, the surface being hydrophilic at a first temperature and being hydrophobic at a second temperature higher than the first temperature, and a protective layer on the adhesive layer. Thereby, when the protective layer is damaged, only the protective layer may be replaced without replacing a glass substrate.
Abstract:
A thin film transistor includes a semiconductor pattern formed on a substrate, the semiconductor pattern being formed of an oxide semiconductor and including a source area, a drain area, and an intermediate area that is formed between the source area and the drain area and includes a plurality of first areas and a second area having higher conductivity than the first areas; a first insulating pattern formed to cover at least the first areas; a second insulating film formed to face the second area, the source area and the drain area; a gate electrode formed on the semiconductor pattern and insulated from the semiconductor pattern by the first insulating pattern and the second insulating film; and source and drain electrodes insulated from the gate electrode and being in contact with the source area and the drain area.
Abstract:
A thin film transistor substrate includes a base substrate, an active pattern disposed on the base substrate, a gate insulation pattern disposed on the active pattern, a gate electrode disposed on the gate insulation pattern and overlapping the channel, and a light-blocking pattern disposed between the base substrate and the active pattern and having a size greater than the active pattern. The active pattern includes a source electrode, a drain electrode, and a channel disposed between the source electrode and the drain electrode.
Abstract:
A switching element includes an active pattern including a channel portion, a source portion connected to the channel portion, and a drain portion connected to the channel portion, the source portion, a gate electrode overlapping the channel portion of the active pattern, a gate insulation layer disposed between the channel portion of the active pattern and the gate electrode, a source electrode disposed on the source portion of the active pattern to make ohmic contact with the source portion, and a drain electrode disposed on the drain portion of the active pattern to make ohmic contact with the drain portion. The drain portion and the channel portion of the active pattern include the same or substantially the same material.
Abstract:
A thin film transistor substrate includes a base substrate, an active pattern disposed on the base substrate, a gate insulation pattern disposed on the active pattern, a gate electrode disposed on the gate insulation pattern and overlapping the channel, and a light-blocking pattern disposed between the base substrate and the active pattern and having a size greater than the active pattern. The active pattern includes a source electrode, a drain electrode, and a channel disposed between the source electrode and the drain electrode.
Abstract:
A display device and a method of manufacturing the display device are disclosed. In one aspect, the method includes forming a sacrificial layer over a carrier substrate, forming a passivation barrier layer to cover upper and lateral sides of the sacrificial layer and forming a thin film transistor layer over the passivation barrier layer. The method also includes placing a mask over the thin film transistor layer so as to expose an edge portion of the passivation barrier layer, wherein the edge portion does not overlap the mask in the depth dimension of the display device. The method further includes removing the edge portion of the passivation barrier layer so as to form a barrier layer and separating the carrier substrate from the barrier layer via the sacrificial layer.
Abstract:
A thin film transistor includes a bottom gate electrode, a top gate electrode and an active pattern. The top gate electrode includes a transparent conductive material and overlaps with the bottom gate electrode. A boundary of the bottom gate electrode and a boundary of the top gate electrode are coincident with each other in a cross-sectional view. The active pattern includes a source portion, a drain portion and a channel portion disposed between the source portion and the drain portion. The channel portion overlaps with the bottom gate electrode and the top gate electrode.