Abstract:
A wireless power transmission system, and a method of controlling power in the wireless power transmission system based on a detection parameter are provided. The method includes transmitting a request signal to a device. The method further includes receiving, from the device, a response signal corresponding to the request signal, the response signal including a parameter of the device. The method further includes generating an operation power based on the parameter of the device, the operation power being used for an operation of the device.
Abstract:
A dual antenna for wireless communication transmission (WPT) and near field communication (NFC) includes a loop antenna, and a dual loop antenna disposed at an inside and an outside of the loop antenna.
Abstract:
A source device configured to transmit a magnetic field via magnetic resonance with a target device includes a source resonator including a plurality of loop circuits respectively configured to generate different magnetic fields each depending on a length of a corresponding one of the plurality of loop circuits, and a circuit selector configured to select one loop circuit among the plurality of loop circuits based on information associated with the target device.
Abstract:
An apparatus configured to transmit power, and transceive data, using mutual resonance, includes a power transmitter configured to wirelessly transmit power to a device, using a power transmission frequency as a resonant frequency. The apparatus further includes a communication unit configured to transceive data to and from the device, using a communication frequency as a resonant frequency. The apparatus further includes a controller configured to determine a charging state of the device based on the data received from the device, and control an amount of the power based on the charging state.
Abstract:
A wireless power transmission system and a multi-mode resonator in the wireless power transmission system are provided. The multi-mode resonator includes a transmission line portion including unit-cells, the unit-cells including respective ends connected to each other, and each of the unit-cells including a capacitor, an inductor connected in parallel to the capacitor, and a via. The multi-mode resonator further includes a ground conducting portion configured to provide an electrical ground to the transmission line portion through the via of each of the unit-cells.
Abstract:
A dual antenna for wireless communication transmission (WPT) and near field communication (NFC) includes a loop antenna, and a dual loop antenna disposed at an inside and an outside of the loop antenna.
Abstract:
A source device configured to transmit a magnetic field via magnetic resonance with a target device includes a source resonator including a plurality of loop circuits respectively configured to generate different magnetic fields each depending on a length of a corresponding one of the plurality of loop circuits, and a circuit selector configured to select one loop circuit among the plurality of loop circuits based on information associated with the target device.
Abstract:
An electronic device and method for transmitting and receiving a wireless power are provided. An electronic device for transmitting and receiving wireless power may include a resonator configured to operate, based on a plurality of operating modes of the electronic device including a power reception mode, a relay mode, and a power transmission mode, wherein: (i) in the power reception mode, the resonator is configured to receive power from a wireless power transmitter, (ii) in the relay mode, the resonator is configured to relay power received from the wireless power transmitter to a wireless power receiver, and (iii) in the power transmission mode, the resonator is configured to transmit power to the wireless power receiver; and a path controller configured to control at least one electrical pathway of electronic device based on the operating mode.
Abstract:
An apparatus and a method for charge control are provided. The apparatus for charge control may include an integrated direct current-to-direct current (DC/DC) converter configured to step up an output voltage level of a load to be greater than or equal to a supply voltage level set in a power amplifier, and the power amplifier configured to convert a direct current (DC) voltage stepped up by the integrated DC/DC converter into an alternating current (AC) voltage based on a resonant frequency, and to amplify the converted AC voltage. The apparatus for charge control may include a rectification unit configured to convert an AC power received wirelessly into a DC power; and a DC/DC converter configured to step down a voltage level of the DC power to a voltage level required by a load in the receiving mode.
Abstract:
An apparatus and method for communication using a wireless power are provided. The apparatus includes an amplifier configured to amplify an input signal based on a power supplied to the amplifier. The apparatus further includes a control unit configured to detect a change in an impedance of a target device, and to change the power based on the change in the impedance. The apparatus further includes a demodulation unit configured to receive a message from the target device, and to demodulate the message based on the changed power.