Abstract:
Disclosed are memory devices including a two-dimensional (2D) material, methods of manufacturing the same, and methods of operating the same. A memory device may include a transistor, which includes graphene and 2D semiconductor contacting the graphene, and a capacitor connected to the transistor. The memory device may include a first electrode, a first insulation layer, a second electrode, a semiconductor layer, a third electrode, a second insulation layer, and a fourth electrode which are sequentially arranged. The second electrode may include the graphene, and the semiconductor layer may include the 2D semiconductor. Alternatively, the memory device may include first and second electrode elements, a graphene layer between the first and second electrode elements, a 2D semiconductor layer between the graphene layer and the first electrode element, and a dielectric layer between the graphene layer and the second electrode.
Abstract:
According to example embodiments, a field effect transistor includes a graphene channel layer on a substrate. The graphene channel layer defines a slit. A source electrode and a drain electrode are spaced apart from each other and arranged to apply voltages to the graphene channel layer. A gate insulation layer is between the graphene channel layer and a gate electrode.
Abstract:
An ultrasound measurement method includes: providing a first object and a second object within an ultrasound image displayed on a touch screen; activating the first object and the second object, to be movable to perform a measurement on the ultrasound image; receiving a touch-and-drag input with respect to at least one of the first and second objects; and displacing a corresponding one of the first and second objects on the ultrasound image in correspondence with the received touch-and-drag input.
Abstract:
A thin film structure includes a metal seed layer, and a method of forming an oxide thin film on a conductive substrate by using the metal seed layer is disclosed. The thin film structure includes a transparent conductive substrate, a metal seed layer that is deposited on the transparent conductive substrate, and a metal oxide layer that is deposited on the metal seed layer.
Abstract:
A graphene memory includes a source and a drain spaced apart from each other on a conductive semiconductor substrate, a graphene layer contacting the conductive semiconductor substrate and spaced apart from and between the source and the drain, and a gate electrode on the graphene layer. A Schottky barrier is formed between the conductive semiconductor substrate and the graphene layer such that the graphene layer is used as a charge-trap layer for storing charges.
Abstract:
A graphene device including separated junction contacts and a method of manufacturing the same are disclosed. The graphene device is a field effect transistor (FET) in which graphene is used as a channel. A source electrode and a drain electrode do not directly contact the graphene channel, and junction contacts formed by doping semiconductor are separately disposed between the graphene channel and the source electrode and between the graphene channel and the drain electrode. Therefore, in an off state where a voltage is not applied to a gate electrode, due to a barrier between the graphene channel and the junction contacts, carriers may not move. As a result, the graphene device may have low current in the off state.