Abstract:
A graphene memory includes a source and a drain spaced apart from each other on a conductive semiconductor substrate, a graphene layer contacting the conductive semiconductor substrate and spaced apart from and between the source and the drain, and a gate electrode on the graphene layer. A Schottky barrier is formed between the conductive semiconductor substrate and the graphene layer such that the graphene layer is used as a charge-trap layer for storing charges.
Abstract:
According to example embodiments, an electronic device includes: a semiconductor layer; a graphene directly contacting a desired (and/or alternatively predetermined) area of the semiconductor layer; and a metal layer on the graphene. The desired (and/or alternatively predetermined) area of the semiconductor layer include one of: a constant doping density, a doping density that is equal to or less than 1019 cm−3, and a depletion width of less than or equal to 3 nm.
Abstract:
A method of preparing graphene includes forming a silicon carbide thin film on a substrate, forming a metal thin film on the silicon carbide thin film, and forming a metal composite layer and graphene on the substrate by heating the silicon carbide thin film and the metal thin film.
Abstract:
Graphene, a method of fabricating the same, and a transistor having the graphene are provided, the graphene includes a structure of carbon (C) atoms partially substituted with boron (B) atoms and nitrogen (N) atoms. The graphene has a band gap. The graphene substituted with boron and nitrogen may be used as a channel of a field effect transistor. The graphene may be formed by performing chemical vapor deposition (CVD) method using borazine or ammonia borane as a boron nitride (B-N) precursor.
Abstract:
The graphene electronic device may include a gate oxide on a conductive substrate, the conductive substrate configured to function as a gate electrode, a pair of first metals on the gate oxide, the pair of the first metals separate from each other, a graphene channel layer extending between the first metals and on the first metals, and a source electrode and a drain electrode on both edges of the graphene channel layer.
Abstract:
According to example embodiments, a tunneling field-effect transistor (TFET) includes a first electrode on a substrate, a semiconductor layer on a portion of the first electrode, a graphene channel on the semiconductor layer, a second electrode on the graphene channel, a gate insulating layer on the graphene channel, and a gate electrode on the gate insulating layer. The first electrode may include a portion that is adjacent to the first area of the substrate. The semiconductor layer may be between the graphene channel and the portion of the first electrode. The graphene channel may extend beyond an edge of at least one of the semiconductor layer and the portion of the first electrode to over the first area of the substrate.
Abstract:
According to example embodiments, a graphene switching devices having a tunable barrier includes a semiconductor substrate that includes a first well doped with an impurity, a first electrode on a first area of the semiconductor substrate, an insulation layer on a second area of the semiconductor substrate, a graphene layer on the insulation layer and extending onto the semiconductor substrate toward the first electrode, a second electrode on the graphene layer and insulation layer, a gate insulation layer on the graphene layer, and a gate electrode on the gate insulation layer. The first area and the second area of the semiconductor substrate may be spaced apart from each other. The graphene layer is spaced apart from the first electrode. A lower portion of the graphene layer may contact the first well. The first well is configured to form an energy barrier between the graphene layer and the first electrode.
Abstract:
A switching device includes a semiconductor layer, a graphene layer, a gate insulation layer, and a gate formed in a three-dimensional stacking structure between a first electrode and a second electrode formed on a substrate.
Abstract:
A graphene electronic device includes a graphene channel layer on a substrate, a source electrode on an end portion of the graphene channel layer and a drain electrode on another end portion of the graphene channel layer, a gate oxide on the graphene channel layer and between the source electrode and the drain electrode, and a gate electrode on the gate oxide. The gate oxide has substantially the same shape as the graphene channel layer between the source electrode and the drain electrode.
Abstract:
The graphene electronic device may include a gate oxide on a conductive substrate, the conductive substrate configured to function as a gate electrode, a pair of first metals on the gate oxide, the pair of the first metals separate from each other, a graphene channel layer extending between the first metals and on the first metals, and a source electrode and a drain electrode on both edges of the graphene channel layer.