Abstract:
FIG. 1 is a top front perspective view of a case for electronic device showing our new design; FIG. 2 is a front view thereof; FIG. 3 is a rear view thereof; FIG. 4 is a left side view thereof; FIG. 5 is a right side view thereof; FIG. 6 is a top plan view thereof; FIG. 7 is a bottom plan view thereof; FIG. 8 is a bottom rear perspective view thereof; FIG. 9 is an enlarged view of the delineated portion 9 in FIG. 1; and, FIG. 10 is an enlarged view of the delineated portion 10 in FIG. 8. The dashed broken lines in the figures depict portions of the case for electronic device that form no part of the claimed design. The dot-dash broken lines in the figures delineating portions of the claimed design that are illustrated in enlargements form no part of the claimed design.
Abstract:
A semiconductor device may include first and second fins formed side by side on a substrate, a first elevated doped region formed on the first fin and having a first doping concentration of impurities, a second elevated doped region formed on the second fin, and a first bridge connecting the first elevated doped region and the second elevated doped region to each other. Methods of manufacturing such a semiconductor device are also disclosed.
Abstract:
A semiconductor device may include first and second fins formed side by side on a substrate, a first elevated doped region formed on the first fin and having a first doping concentration of impurities, a second elevated doped region formed on the second fin, and a first bridge connecting the first elevated doped region and the second elevated doped region to each other. Methods of manufacturing such a semiconductor device are also disclosed.
Abstract:
A semiconductor device has a silicide source/drain region is fabricated by growing silicon on an epitaxial region including silicon and either germanium or carbon. In the method, a gate electrode is formed on a semiconductor substrate with a gate insulating layer interposed therebetween. An epitaxial layer is formed in the semiconductor substrate at both sides of the gate electrodes. A silicon layer is formed to cap the epitaxial layer. The silicon layer and a metal material are reacted to form a silicide layer. In a PMOS, the epitaxial layer has a top surface and inclined side surfaces that are exposed above the upper surface of the active region. The silicon layer is grown on the epitaxial layer in such a way as to cap the top and inclined surfaces.
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The device may include an active pattern protruding from a substrate, gate structures crossing the active pattern, and a source/drain region provided between adjacent ones of the gate structures. The source/drain region may include a source/drain epitaxial layer in a recessed region, which is formed in the active pattern between the adjacent ones of the gate structures. Further, an impurity diffusion region may be provided in the active pattern to enclose the source/drain epitaxial layer along inner surfaces of the recessed region.
Abstract:
A semiconductor device has a silicide source/drain region is fabricated by growing silicon on an epitaxial region including silicon and either germanium or carbon. In the method, a gate electrode is formed on a semiconductor substrate with a gate insulating layer interposed therebetween. An epitaxial layer is formed in the semiconductor substrate at both sides of the gate electrodes. A silicon layer is formed to cap the epitaxial layer. The silicon layer and a metal material are reacted to form a silicide layer. In a PMOS, the epitaxial layer has a top surface and inclined side surfaces that are exposed above the upper surface of the active region. The silicon layer is grown on the epitaxial layer in such a way as to cap the top and inclined surfaces.
Abstract:
A semiconductor device has a silicide source/drain region is fabricated by growing silicon on an epitaxial region including silicon and either germanium or carbon. In the method, a gate electrode is formed on a semiconductor substrate with a gate insulating layer interposed therebetween. An epitaxial layer is formed in the semiconductor substrate at both sides of the gate electrodes. A silicon layer is formed to cap the epitaxial layer. The silicon layer and a metal material are reacted to form a silicide layer. In a PMOS, the epitaxial layer has a top surface and inclined side surfaces that are exposed above the upper surface of the active region. The silicon layer is grown on the epitaxial layer in such a way as to cap the top and inclined surfaces.
Abstract:
A semiconductor device has a silicide source/drain region is fabricated by growing silicon on an epitaxial region including silicon and either germanium or carbon. In the method, a gate electrode is formed on a semiconductor substrate with a gate insulating layer interposed therebetween. An epitaxial layer is formed in the semiconductor substrate at both sides of the gate electrodes. A silicon layer is formed to cap the epitaxial layer. The silicon layer and a metal material are reacted to form a silicide layer. In a PMOS, the epitaxial layer has a top surface and inclined side surfaces that are exposed above the upper surface of the active region. The silicon layer is grown on the epitaxial layer in such a way as to cap the top and inclined surfaces.
Abstract:
A semiconductor device has a silicide source/drain region is fabricated by growing silicon on an epitaxial region including silicon and either germanium or carbon. In the method, a gate electrode is formed on a semiconductor substrate with a gate insulating layer interposed therebetween. An epitaxial layer is formed in the semiconductor substrate at both sides of the gate electrodes. A silicon layer is formed to cap the epitaxial layer. The silicon layer and a metal material are reacted to form a silicide layer. In a PMOS, the epitaxial layer has a top surface and inclined side surfaces that are exposed above the upper surface of the active region. The silicon layer is grown on the epitaxial layer in such a way as to cap the top and inclined surfaces.
Abstract:
Provided is a method of fabricating a semiconductor device. The method includes forming a gate pattern on a semiconductor substrate, injecting amorphization elements into the semiconductor substrate to form an amorphous portion at a side of the gate pattern, removing the amorphous portion to form a recess region, and forming a source/drain pattern in the recess region. When the recess region is formed, an etch rate of the amorphous portion is substantially the same in two different directions (e.g., and any other direction) of the semiconductor substrate.