Abstract:
Various embodiments of the present invention relate to a signal measurement method for adding a secondary node in an electronic device and the electronic device thereof, and the electronic device may include a first communication circuit configured to provide first wireless communication using a first frequency range, a second communication circuit configured to provide second wireless communication using a second frequency range, a processor operatively connected with the first communication circuit and the second communication circuit, and a memory operatively connected with the processor, and configured to store at least one first measurement configuration information, and the memory may store instructions for, when executed, causing the processor to, using the first communication circuit, perform communication connection with a master node (MN) base station operating as an MN, while performing the communication connection with the MN base station, measure a state of a signal from at least one base station for operating as a secondary node (SN) using the at least one first measurement configuration information, using the second communication circuit, and transmit a first message including at least part of the measurement result, to the MN base station.
Abstract:
The disclosure relates to a device and a method for controlling transmission power of an electronic device in a wireless communication system. An electronic device may include: a housing; at least one radio frequency integrated circuit (RFIC) disposed in the housing and configured to support a first radio access technology (RAT) and a second RAT; a first communication processor electrically or operationally connected to the at least one RFIC; a second communication processor electrically or operationally connected to the at least one RFIC and the first communication processor; and at least one memory which is operationally connected to the first communication processor and the second communication process or is a part of at least one of the first communication processor or the second communication processor, and which is configured to store a first threshold value related to the at least one RFIC.
Abstract:
An electronic device is provided. The electronic device includes a first communication processor to support a first network communication with a first network, and a second communication processor to support a second network communication with a second network different from the first network. The second communication processor configured to receive, from the first communication processor, a first report condition for measurement information for a signal from at least one which corresponds to the second network communication, identify a second report condition which corresponds to connection failure of the electronic device to a first base station corresponding to the second network communication, transfer the first measurement information to the first communication processor, and transfer the first measurement information to the first communication processor, and the first communication processor may be configured to transmit, to a base station which corresponds to the first network communication, the first measurement information received from the second communication processor.
Abstract:
An electronic device may include: a communication processor; and an application processor configured to transmit data to be transmitted through first cellular communication and/or second cellular communication to the communication processor, wherein the communication processor includes: a PDCP configured to support a split bearer for transmitting split data; a first RLC configured to split data received from the PDCP; and a second RLC configured to split data received from the PDCP, wherein the PDCP is configured to receive data to be transmitted through the first cellular communication and/or the second cellular communication from the application processor, transmit the data to at least one of the first RLC or the second RLC, and stop transmitting the data to the RLC receiving the data, based on a result of comparison between the size of data temporarily stored in the RLC receiving the data with a first configuration value.
Abstract:
An electronic device may include: a communication processor; and an application processor configured to transmit data to be transmitted through first cellular communication and/or second cellular communication to the communication processor, wherein the communication processor includes: a PDCP configured to support a split bearer for transmitting split data; a first RLC configured to split data received from the PDCP; and a second RLC configured to split data received from the PDCP, wherein the PDCP is configured to split data received from the application processor into data units having a preset size, identify a data processing rate of the first RLC and a data processing rate of the second RLC, and distribute the data units to the first RLC and the second RLC, based on the data processing rate of the first RLC and the data processing rate of the second RLC.
Abstract:
A semiconductor device may include active patterns extended in a first direction and spaced apart from each other in the first direction, a device isolation layer defining the active patterns, an insulating structure provided between the active patterns and between the device isolation layer, and a gate structure disposed on the insulating structure and extended in a second direction crossing the first direction. The gate structure may include an upper portion and a lower portion. The lower portion of the gate structure may be enclosed by the insulating structure.
Abstract:
An electronic device which schedules a plurality of tasks, and an operating method thereof. The electronic device includes a processor and a memory operatively connected to the processor, and when being executed, the memory stores instructions that cause the processor to: detect occurrence of an interrupt requesting performance of a second task while performing a first task; obtain reference values according to a time of the first task, and reference values according to a time of the second task; schedule the first task and the second task based on a reference value of the first task and a reference value of the second task which correspond to a time at which the interrupt occurs; and process the first task and the second task based on a result of the scheduling. Other embodiments are possible.
Abstract:
An electronic device includes at least one wireless communication circuit; a display, a processor, and a memory configured to store first information associated with new radio (NR) cell searching, the memory storing instructions that, when executed, cause the processor to receive a system information block (SIB) including information indicating that evolved terrestrial radio access network (E-UTRAN) new radio-dual connectivity (EN-DC) is possible, from a long-term evolution (LTE) base station by using the at least one wireless communication circuit; select a cell of the LTE base station based at least partly on the SIB, using the at least one wireless communication circuit; display a first indicator associated with availability of LTE on a partial region of the display, in response to selecting the cell of the LTE base station; after selecting the cell of the LTE base station, perform the NR cell searching based at least partly on the first information, using the at least one wireless communication circuit; display a second indicator associated with availability of NR on the partial region of the display, based at least partly on the result of the NR cell searching; and display a third indicator obtained by changing at least part of a color or shading of the second indicator, on the partial region of the display in response to performing data transmission to an NR base station after determining the result of the NR cell searching.
Abstract:
A method for controlling a temperature in an air conditioning device according to an embodiment of the present invention includes: calculating an exponentially-weighted running mean temperature for outdoor temperatures measured for a predetermined period, setting a variable constant and a fixed constant according to the exponentially-weighted running mean temperature and an operation condition, setting a comfort temperature by multiplying the exponentially-weighted running mean temperature by the variable constant and adding the fixed constant, and controlling an indoor temperature by using the set comfort temperature. Here, the fixed constant and the variable constant are constants obtained through a regression analysis of a distribution relationship between an exponentially-weighted running mean temperature and a comfort temperature, and the distribution of comfort temperatures is linearly increased from the fixed constant with a gradient of the comfort temperature according to the exponentially-weighted running mean temperature.
Abstract:
The disclosure relates to 5th generation (5G) or 6th generation (6G) communication systems. A method performed by a first network entity in a wireless communication system is provided. The method includes receiving a request for supporting a computing service for an operation of an application executed in a user equipment (UE) and status information of the UE from the UE, transmitting requirement information related to the request for supporting the computing service and a request for discovering a computing server to a network repository function (NRF), receiving information on a second network entity connected to a computing server from the NRF, receiving status information of the computing server from the second network entity, determining a computing server and a computing configuration for supporting the operation of the application, transmitting a data network access identifier (DNAI) of the computing server and information on the computing configuration.