Abstract:
A light refraction controlling panel, a 3D-display, and a method of operating a 3D-display are provided. The light refraction controlling panel includes a transparent substrate, a barrier wall on the transparent substrate, first to fourth electrodes on the barrier wall, the first to fourth electrodes being separated from each other, an electro-wetting prism within the barrier wall, the electro-wetting prism being configured to refract incident light to a desired direction, and an isolation layer between the barrier wall and the first to fourth electrodes, and the electro-wetting prism. One electrode of two adjacent electrodes of the first to fourth electrodes is inside an other electrode of the two adjacent electrodes.
Abstract:
A transistor may include a channel layer formed of an oxide semiconductor. The oxide semiconductor may include GaZnON, and a proportion of Ga content to a total content of Ga and Zn of the channel layer is about 0.5 to about 4.5 at %.
Abstract:
A ZnO-based thin film transistor (TFT) is provided herein. Also provided is a method for manufacturing the TFT. The ZnO-based TFT is very sensitive to the oxygen concentration present in a channel layer. In order to prevent damage to a channel layer of a bottom gate TFT, and to avoid a deep negative threshold voltage resulting from damage to the channel layer, the method for manufacturing the ZnO-based TFT comprises formation of an etch stop layer or a passivation layer comprising unstable or incompletely bonded oxygen, and annealing the layers to induce an interfacial reaction between the oxide layer and the channel layer and to reduce the carrier concentration.
Abstract:
An organic light-emitting display device includes a plurality of first and second electrodes which are spaced apart from each other on a substrate, a plurality of light-emitting layers between the first and second electrodes, a flexible thin encapsulation film on the second electrodes, and a color filter on the flexible thin encapsulation film.
Abstract:
A foldable display device includes a first display panel which displays a portion of an image; a second display panel which displays a second portion different from the first portion of the image; a first protecting window on the first display panel; a second protecting window on the second display panel; and a flexible material layer between the first and second protecting windows. Side surfaces of the first and second protecting windows which contact the flexible material layer, respectively, are inclined with respect to a surface of each of the first and second protecting windows.
Abstract:
A ZnO-based thin film transistor (TFT) is provided herein, as is a method of manufacturing the TFT. The ZnO-based TFT has a channel layer that comprises ZnO and ZnCl, wherein the ZnCl has a higher bonding energy than ZnO with respect to plasma. The ZnCl is formed through the entire channel layer, and specifically is formed in a region near the surface of the channel layer. Since the ZnCl is strong enough not to be decomposed when exposed to plasma etching gas, an increase in the carrier concentration can be prevented. The distribution of ZnCl in the channel layer, may result from the inclusion of chlorine (Cl) in the plasma gas during the patterning of the channel layer.
Abstract:
A thin film transistor (TFT) and a method of manufacturing the same are provided, the TFT including a gate insulating layer on a gate. A channel may be formed on a portion of the gate insulating layer corresponding to the gate. A metal material may be formed on a surface of the channel. The metal material crystallizes the channel. A source and a drain may contact side surfaces of the channel.
Abstract:
Disclosed is a thin film transistor (TFT). The TFT may include an intermediate layer between a channel and a source and drain. An increased off current, which may occur to a drain area of the TFT, is reduced due to the intermediate layer. Accordingly, the TFT may be stably driven.
Abstract:
An acousto-optic device capable of increasing a range of a diffraction angle of output light by using a nanostructured acousto-optic medium, and an optical scanner, an optical modulator, a two-dimensional/three-dimensional (2D/3D) conversion stereoscopic image display apparatus, and a holographic display apparatus using the acousto-optic device. The acousto-optic device may include a nanostructured acousto-optic medium formed by at least two different mediums repeatedly alternating with each other, wherein at least one of the at least two different mediums includes an acousto-optic medium. The acousto-optic device having the aforementioned structure may increase the range of a diffraction angle of output light. Thus, various systems such as the optical scanner, the optical modulator, the 2D/3D conversion stereoscopic image display apparatus, and the holographic display apparatus may not require a separate optical system to increase an operational angle range, thereby decreasing a size of the system and/or improving a resolution of the system.
Abstract:
A method of preparing a thin film includes coating a thin film-forming composition on a substrate, and heat-treating the coated thin film-forming composition under a pressure less than 760 Torr. The thin film includes a compact layer having a thickness in a range of greater than 50 Å to about 20,000 Å and a refractive index in a range of about 1.85 to about 2.0.