Abstract:
A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.
Abstract:
A new class of media for control of emission of thermal radiation from an object or part thereof is disclosed. These materials can be used for a wide variety of thermal control applications.
Abstract:
The invention relates to light-emitting devices, and related components, systems and methods. In one aspect, the present invention is related to light emitting diode (LED) light extraction efficiency. A non-limiting example, the application teaches a method for improving light emitting diode (LED) extraction efficiency, by providing a nano-rod light emitting diode; providing quantum wells; and reducing the size of said nano-rod LED laterally in the quantum-well plane (x and y), thereby improving LED extraction efficiency.
Abstract:
A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.
Abstract:
An optical absorber includes vertically aligned carbon nanotubes with an ultra-low reflectance less than 0.16% and an absorption efficiency greater than 99.84%. The index of refraction and the absorption constant are controlled by independently varying the nanotube diameter and nanotube spacing. The nanotubes are mostly double-walled. The density of the nanotube arrays is very low, around 0.015 g/cm3.
Abstract translation:光吸收器包括垂直排列的碳纳米管,超低反射率小于0.16%,吸收效率大于99.84%。 通过独立地改变纳米管直径和纳米管间距来控制折射率和吸收常数。 纳米管主要是双壁的。 纳米管阵列的密度非常低,约为0.015g / cm 3。
Abstract:
The invention is directed to an integrated polarized light emitting diode device that has a light emitting diode, a metal grating, an oxide layer, and a built-in photonic crystal rotator. Additional teachings include a method for making the integrated polarized light emitting diode, a method for improving the polarization selectivity and energy efficiency of a light emitting diode, and a method for rotating polarization of a light emitting diode.
Abstract:
An anti-reflection coating has an average total reflectance of less than 10%, for example less than 5.9% such as from 4.9% to 5.9%, over a spectrum of wavelengths of 400-1100 nm and a range of angles of incidence of 0-90 degrees with respect to a surface normal of the anti-reflection coating. An anti-reflection coating has a total reflectance of less than 10%, for example less than 6% such as less than 4%, over an entire spectrum of wavelengths of 400-1600 nm and an entire range of angles of incidence of 0-70 degrees with respect to a surface normal of the anti-reflection coating.
Abstract:
The invention is directed to an integrated polarized light emitting diode device that has a light emitting diode, a metal grating, an oxide layer, and a built-in photonic crystal rotator. Additional teachings include a method for making the integrated polarized light emitting diode, a method for improving the polarization selectivity and energy efficiency of a light emitting diode, and a method for rotating polarization of a light emitting diode.
Abstract:
The invention relates to light-emitting devices, and related components, systems and methods. In one aspect, the present invention is related to light emitting diode (LED) light extraction efficiency. A non-limiting example, the application teaches a method for improving light emitting diode (LED) extraction efficiency, by providing a nano-rod light emitting diode; providing quantum wells; and reducing the size of said nano-rod LED laterally in the quantum-well plane (x and y), thereby improving LED extraction efficiency.
Abstract:
A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.