摘要:
An LED emitting light of wavelength mainly 375 nm or below. The LED includes a GaN layer (16), an n-clad layer (20), an AlInGaN buffer layer (22), a light emitting layer (24), a p-clad layer (26), a p-electrode (30), and an n-electrode (32) arranged on a substrate (10). The light emitting layer (24) has a multi-layer quantum well structure (MQW) in which an InGaN well layer and an AlInGaN barrier layer are superimposed. The quantum well structure increases the effective band gap of the InGaN well layer and reduces the light emitting wavelength. Moreover, by using the AlInGaN buffer layer (22) as the underlying layer of the light emitting layer (24), it is possible to effectively inject electrons into the light emitting layer (24), thereby increasing the light emitting efficiency.
摘要:
A light-emitting device operating on a high drive voltage and a small drive current. LEDs (1) are two-dimensionally formed on an insulating substrate (10) of e.g., sapphire monolithically and connected in series to form an LED array. Two such LED arrays are connected to electrodes (32) in inverse parallel. Air-bridge wiring (28) is formed between the LEDs (1) and between the LEDs (1) and electrodes (32). The LED arrays are arranged zigzag to form a plurality of LEDs (1) to produce a high drive voltage and a small drive current. Two LED arrays are connected in inverse parallel, and therefore an AC power supply can be used as the power supply.
摘要:
A light-emitting device operating on a high drive voltage and a small drive current. LEDs (1) are two-dimensionally formed on an insulating substrate (10) of e.g., sapphire monolithically and connected in series to form an LED array. Two such LED arrays are connected to electrodes (32) in inverse parallel. Air-bridge wiring (28) is formed between the LEDs (1) and between the LEDs (1) and electrodes (32). The LED arrays are arranged zigzag to form a plurality of LEDs (1) to produce a high drive voltage and a small drive current. Two LED arrays are connected in inverse parallel, and therefore an AC power supply can be used as the power supply.
摘要:
A light-emitting device operating on a high drive voltage and a small drive current. LEDs (1) are two-dimensionally formed on an insulating substrate (10) of e.g., sapphire monolithically and connected in series to form an LED array. Two such LED arrays are connected to electrodes (32) in inverse parallel. Air-bridge wiring (28) is formed between the LEDs (1) and between the LEDs (1) and electrodes (32). The LED arrays are arranged zigzag to form a plurality of LEDs (1) to produce a high drive voltage and a small drive current. Two LED arrays are connected in inverse parallel, and therefore an AC power supply can be used as the power supply.
摘要:
This method for inhibiting damage due to arc between electrical contacts involves the spreading of a grease composed of from 70% by weight to 95% by weight of a base oil and from 5% by weight to 30% by weight of a thickening agent and additives over a pair of electrical contacts in a circuit which causes terminals to move relative to each other so that they are disconnected from each other, whereby damage on the contact area due to arc occurring when the electrical contacts are isolated from each other is inhibited. As the thickening agent there is preferably used an organic bentonite. As the base oil there is preferably sued an ester oil, glycol oil or poly-α-olefin. The base oil preferably has a low density to reduce arc energy.
摘要:
Embodiments of the invention provide a crystalline aluminum carbide thin film, a semiconductor substrate having the crystalline aluminum carbide thin film formed thereon, and a method of fabricating the same. Further, the method of fabricating the AlC thin film includes supplying a carbon containing gas and an aluminum containing gas to a furnace, to growing AlC crystals on a substrate.
摘要:
The present invention provides a method of fabricating a semiconductor substrate, the method including forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, etching the substrate using a solution to remove the metallic material layer and a portion of the first semiconductor layer, and forming a cavity in the first semiconductor layer under where the metallic material layer was removed.
摘要:
Exemplary embodiments of the present invention provide a method of fabricating a semiconductor substrate, the method including forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, etching the substrate using a solution to remove the metallic material layer and a portion of the first semiconductor layer, and forming a cavity in the first semiconductor layer under where the metallic material layer was removed.
摘要:
A light-emitting device operating on a high drive voltage and a small drive current. LEDs (1) are two-dimensionally formed on an insulating substrate (10) of e.g., sapphire monolithically and connected in series to form an LED array. Two such LED arrays are connected to electrodes (32) in inverse parallel. Air-bridge wiring (28) is formed between the LEDs (1) and between the LEDs (1) and electrodes (32). The LED arrays are arranged zigzag to form a plurality of LEDs (1) to produce a high drive voltage and a small drive current. Two LED arrays are connected in inverse parallel, and therefore an AC power supply can be used as the power supply.
摘要:
The present invention provides a method of fabricating a light emitting diode, which comprises the steps of forming a compound semiconductor layer on a substrate, the compound semiconductor layer including a lower semiconductor layer, an active layer and an upper semiconductor layer; and scratching a surface of the substrate by rubbing the substrate with an abrasive. According to the present invention, the abrasive is used to rub and scratch the surface of the light emitting diode, thereby making it possible to cause the light emitted from the active layer to effectively exit to the outside. Therefore, the light extraction efficiency of the light emitting diode can be improved.