Abstract:
Provided is a magnetic memory device. The magnetic memory device includes a first magnetization layer, a tunnel barrier disposed on the first magnetization layer, a second magnetization layer disposed on the tunnel barrier, and a spin current assisting layer disposed on at least a portion of a sidewall of the second magnetization layer.
Abstract:
An oscillator generates a signal using precession of a magnetic moment of a magnetic domain wall. The oscillator includes a free layer having the magnetic domain wall and a fixed layer corresponding to the magnetic domain wall. A non-magnetic separation layer is interposed between the free layer and the fixed layer.
Abstract:
A servo master having a pattern capable of being magnetically transferred as a servo pattern to a magnetic recording medium, wherein the servo master is formed of a material having a magnetic anisotropic constant perpendicular to a surface of the magnetic recording medium. The magnetic transfer method can include preparing a servo master patterned with a servo pattern to be formed on a magnetic recording medium, and arranging the servo master on the magnetic recording medium and applying an external magnetic field to the servo master in a first direction perpendicular to a recording surface of the magnetic recording medium, and in a second direction parallel to the recording surface of the magnetic recording medium.
Abstract:
Information storage devices are provided. An information storage device includes a track including at least one Co alloy layer and a soft magnetic layer. The track further includes a plurality of magnetic domains. A current applying element is connected to the track. The track includes a plurality of layers stacked alternately.
Abstract:
A memory device is comprised of a magnetic structure that stores information in a plurality of domains of the magnetic structure. A write unit writes information to at least one of the plurality of domains of the magnetic structure by applying a write current to the magnetic structure in response to a control signal. A read unit reads information from at least one of the plurality of domains of the magnetic structure by applying a read current to the magnetic structure in response to the control signal. A domain wall movement control unit is coupled to a portion of the magnetic structure and moves information stored in the plurality of domains in the magnetic structure to other domains in the magnetic structure in response to the control signal. The write unit, the read unit and the domain wall movement control unit are all coupled to the same control signal line that provides the control signal.
Abstract:
Provided is a bit patterned medium including bridges which induce exchange coupling between adjacent bits in order to reduce a switching field difference resulting from different magnetization directions of bits. The bridges and the bits are integrally formed with each other. The bits are locally connected by the bridges. A magnetostatic force for each bit is reduced due to an exchange coupling between adjacent bits, thereby reducing a switching field distribution of the bits.
Abstract:
A magnetic memory device includes a track in which different non-magnetic layers are respectively formed on upper and lower surfaces of a magnetic layer. One of the two non-magnetic layers includes an element having an atomic number greater than or equal to 12. Accordingly, the magnetic layer has a relatively high non-adiabaticity (β).
Abstract:
Provided are a data storage device using a magnetic domain wall movement and a method of operating the data storage device. The data storage device includes a magnetic layer including a plurality of magnetic domains, first and second ferromagnetic pinned layers formed on lower and upper surfaces of the magnetic layer, respectively, and having opposite magnetization directions, first and second insulating spacers interposed between the first and second ferromagnetic pinned layers and the magnetic layer, respectively, and an energy supplying unit applying energy to the magnetic layer for a magnetic domain wall movement.
Abstract:
A servo master having a pattern capable of being magnetically transferred as a servo pattern to a magnetic recording medium, wherein the servo master is formed of a material having a magnetic anisotropic constant perpendicular to a surface of the magnetic recording medium. The magnetic transfer method can include preparing a servo master patterned with a servo pattern to be formed on a magnetic recording medium, and arranging the servo master on the magnetic recording medium and applying an external magnetic field to the servo master in a first direction perpendicular to a recording surface of the magnetic recording medium, and in a second direction parallel to the recording surface of the magnetic recording medium.
Abstract:
Provided are a magnetic layer, a method of forming the magnetic layer, an information storage device, and a method of manufacturing the information storage device. The information storage device may include a magnetic track having a plurality of magnetic domains, a current supply element connected to the magnetic layer and a reading/writing element. The magnetic track includes a hard magnetic track, and the hard magnetic track has a magnetization easy-axis extending in a direction parallel to a width of the hard magnetic track.