摘要:
This invention discloses novel field emitters which exhibit improved emission characteristics combined with improved emitter stability, in particular, new types of carbide or nitride based electron field emitters with desirable nanoscale, aligned and sharped-tip emitter structures.
摘要:
This invention discloses novel nanocomposite material structures which are strong, highly conductive, and fatigue-resistant. It also discloses novel fabrication techniques to obtain such structures. The new nanocomposite materials comprise a high-conductivity base metal, such as copper, incorporating high-conductivity dispersoid particles that simultaneously minimize field enhancements, maintain good thermal conductivity, and enhance mechanical strength. The use of metal nanoparticles with electrical conductivity comparable to that of the base automatically removes the regions of higher RF field and enhanced current density. Additionally, conductive nanoparticles will reduce the surface's sensitivity to arc or sputtering damage. If the surface is sputtered away to uncover the nanoparticles, their properties will not be dramatically different from the base surface. Most importantly, the secondary electron emission coefficients of all materials in the nanocomposite are small and close to unity, whereas the previously used insulating particles can produce significant and undesirable electron multiplication.
摘要:
A micro-electro-mechanical systems (MEMS) device is presented that can read very high density magnetic media and very high density CD ROMs. Both the magnetic and optical read heads comprise one or more cold cathode MEMS e-beam cells. The e-beams are deflected according to the data bit being interrogated and the state of that bit is determined by a detector. Large arrays of such cells can simultaneously read large areas of the memory media. Arrays of such MEMs detectors can comprise a plurality of “steerable” e-beam emitters that can be directed to interrogate specific data sites on the magnetic media. Thus, in some cases, the media can remain stationary. Densities of 200 gigabits per square inch or more and read speeds greater than 1000 times faster can be achieved.
摘要:
This invention provides novel methods of fabricating novel gated field emission structures that include aligned nanowire electron emitters (individually or in small groups) localized in central regions within gate apertures. It also provides novel devices using nanoscale emitters for microwave amplifiers, electron-beam lithography, field emission displays and x-ray sources. The new emission structures are particularly useful in the new devices.
摘要:
In accordance with the invention, a spaced-apart array of nanostructures is fabricated by providing a shadow mask having a plurality of spaced apart, relatively large apertures, reducing the size of the apertures to nanoscale dimensions, and depositing a material through the mask to form a plurality of spaced-apart nanostructures. In a preferred embodiment, the spaced apart nanostructures comprise nanoscale islands (nano-islands) of catalyst material, and spaced-apart nanowires such as carbon nanotubes are subsequently grown from the islands.
摘要:
This invention discloses such a convenient navigation system and navigatable capsules which are useful for remote-controlled imaging, biopsy and programmable drug release within the body of an animal. The components of the system comprise a capsule dimensioned and shaped to move within the body. An anisotropic magnetic component is mechanically coupled to the capsule to move or orient the body in relation to an applied magnetic field, and a magnetic field generating system external of the body generates a three dimensionally oriented magnetic field within the body to move or orient capsule.
摘要:
An improved process for fabricating emitter structures from nanowires, wherein the nanowires are coated with a magnetic material to allow useful alignment of the wires in the emitter array, and techniques are utilized to provide desirable protrusion of the aligned nanowires in the final structure. In one embodiment, nanowires at least partially coated by a magnetic material are provided, the nanowires having an average length of about 0.1 &mgr;m to about 10,000 &mgr;m. The nanowires are mixed in a liquid medium, and a magnetic field is applied to align the nanowires. The liquid medium is provided with a precursor material capable of consolidation into a solid matrix, e.g., conductive particles or a metal salt, the matrix securing the nanowires in an aligned orientation. A portion of the aligned nanowires are exposed, e.g., by etching a surface portion of the matrix material, to provide desirable nanowire tip protrusion.
摘要:
A device for use in a micro-electro-mechanical system (MEMS) optical system. The device includes a substrate having opposing first and second sides, wherein the first side has a light reflective optical layer located thereover, and the second side is an irregular surface.
摘要:
A MEMs device comprises a component layer including a frame structure and at least one component movably coupled to the frame and an actuator layer including at least one conductive path and at least one actuator for moving the component. The component layer and the actuator layer are bonded together with solder or other materials in lateral alignment. Advantageously the layers are provided with metallization pads and are bonded together in lateral alignment with predetermined vertical gap spacing by solder bonds between the pads. In a preferred embodiment the MEMs device, however bonded, comprises a component layer, an actuator layer and an intervening spacer. The spacer provides the walls of a cavity between the component and the pertinent actuators to permit movement of the component. The walls cover the bulk of the peripheral boundary of the cavity to provide aerodynamic isolation. Advantageously the walls are conductive to provide electrostatic isolation. The device has particular utility in optical cross connection, variable attenuation and power gain equalization.
摘要:
In accordance with the invention, an improved conductive nanostructure assembly comprises an array of metallized nanostructures disposed on a conductive substrate. The substrate can also be metallized. Such assemblies provide continuous electron transport from the substrate to the tips of the nanostructures. Several ways of making such assemblies are described along with several devices employing the assemblies.